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1

 Welcome to mIRC

mIRC is a full featured Internet Relay Chat client for Windows that can be used to
communicate, share, play or work with others on IRC networks around the world, either
in multi-user group conferences or in one-to-one private discussions.

It has a clean, practical interface that is highly configurable and supports features
such as buddy lists, file transfers, multi-server connections, IPv6, SSL encryption, proxy
support, UTF-8 display, UPnP, customizable sounds, spoken messages, tray notifications,
message logging and more.

mIRC also has a powerful scripting language that can be used both to automate mIRC
and to create applications that perform a wide range of functions from network
communications to playing games. 

If you are new to mIRC, the first few sections of the mIRC help file will introduce you to
the basic features of mIRC and IRC. They will also guide you through the first few steps
of Connecting to a server, Joining a channel, and Chatting.

Once you have learned how to use the basic features of mIRC and IRC, you can move on
to the more complex features, such as configuring mIRC for your own needs or learning
how to create scripts and popups.

If you ever need help, remember that you can visit the mIRC Website for help resources
and guides.

2

Connect to a Server

Connecting to an IRC server is the first step to using IRC and is performed through the 
Connect dialog that pops up automatically when you first run mIRC.

You will need to enter some information about yourself in the Connect dialog, select an
IRC Server from the servers list, and then click the Connect button to connect to the
IRC Server.

You will know that you have connected to the IRC Server when you see a Message Of
The Day in the mIRC status window. The Message of the Day contains information about
the server, its owners and administrators, connection policies, and other helpful
information.

At this point you will be able to Join a channel to start chatting.

http://www.mirc.com
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2.1

Connection Issues

If you are having difficulty connecting to an IRC network, the solution in almost all cases
is to try a different server on that network until you find one that works for you.

However, if you are unable to connect to any servers on any IRC network, it may be that
you are running anti-virus or firewall software that is blocking mIRC and preventing it
from connecting, or Windows itself may be blocking mIRC for some reason. You would
need to add mIRC to the allowed/exceptions list of your anti-virus or firewall software to
allow it to connect.

There are also a few other situations where you might have difficulty connecting to an
IRC network and these are described below.

Unable to resolve server
If you try to connect to a server and see this message, the problem could be:

An invalid or non-working server address
You might be trying to connect to an IRC Server that is currently not working, or perhaps
is an old address and does not exist anymore. You should try another IRC Server.

Your internet connect is not working correctly
This problem would also result in your being unable to connect to other internet services
such as web sites. You should try again later.

Unable to connect to server
If you try to connect to a server and see this message, the problem could be:

IRC server is not working
You might be trying to connect to an IRC Server that is currently not working. This is the
most likely problem. You should try another IRC Server.

Invalid port number
The IRC Server address might be correct but you have specified the wrong port. Most
servers operate at least on port 6667, so you should try that port to see if it solves the
problem.

Other messages
If you try to connect to a server and get Disconnected and see the message Closing
Link followed by a comment such as No Authorization or No More Connections, it
might be that you are too far away geographically from that server, or that the server is
full and cannot handle anymore users, or there may be other reasons. You should try a
different IRC Server until you find one works for you.

3

Join a Channel
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Once you have connected to an IRC Server, you can join a channel to talk to other
people. There are several ways to join a channel. Each is explained below.

Remember that each network you connect to has its own unique list of channels, created
by users on that network.

The Favorites Folder
The easiest way to join a channel is through the favorites folder where you can store a
list of your favorite channels. mIRC automatically pops up this folder the moment you
connect to an IRC Server. You can join one of the listed channels by selecting it and
clicking the Join button.

You can also view the favorites folder by clicking on the favorites folder button in the
toolbar or through the Tools menu.

The Channels List
Another way to join a channel is to download and search through the list of active
channels on a server by using the Channels List dialog.

The /join Command
The format of the /join command, which is a Basic IRC Command, is /join #channel
where #channel is the name of the channel you want to join. So if you wanted to join
channel #mIRC, you would type /join #mIRC and press enter, and a moment later the
#mIRC window will open indicating that you have joined it.

Creating a channel
You can create a new channel if it does not already exist just by joining it. If you want to
create a channel called #bubbles, you would just type /join #bubbles. If it does not
exist it will be created for you. If it does exist, you will join it.

Talking on a channel
You can talk to other people by typing in a message and pressing the enter key. Your
message will be sent to the channel and everyone on the channel will see it. A good first
message is just to say hello to everyone with a smiley face :-)

The listbox on the side of the channel window lists all of the people who are currently on
that channel. If you click your right mouse button in the listbox, a popup menu with
various options will appear.

Popup menus are actually used everywhere in mIRC, you can even click your right
mouse button in the status window, or in the channel window itself, and a different
popup menu will appear. These popup menus are configurable, you can change them in
the Popups dialog to perform whatever functions you require.

Leaving a channel
You can leave a channel by clicking the channel window close button, or you can use the 
/part command, which is another Basic IRC command similar to /join. The format of the
/part command is /part #channel where #channel is the name of the channel you want
to leave. If you type /part without a channel name and press enter, you will part the
current channel.

Hint: you can click the top left corner button/icon in any window in mIRC to view the
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System menu which contains useful features.

3.1

Channels List

The Channels List dialog allows you to download the active channels on a server and to
search the list for channels that match your interests.

On some networks, the list can be quite long, containing thousands of channels, and may
take a few minutes to download. The list is saved once you have downloaded it to allow
to you search through it quickly again. However, if you want an updated list you will
need to download it again.

The channels list dialog can be accessed via its toolbar button, through the Tools menu,
or by typing the key combination Alt+L.

Note: If you click your right mouse button in the channels list window, a popup menu
with various options will appear.

4

Chat Privately

As well as being able to chat on public channels, mIRC also allows you to chat privately
with other people.

If you are on a channel, and you see someone you would like to chat with, you can
double-click on their nickname in the nickname listbox and a private query window will
open up. You can then start chatting privately to them through the query window.
Alternatively, you can click your right mouse button on a nickname in the nickname
listbox and a popup menu will appear with various options, one of which will be to open
a private query window to the selected nickname.

If you are not on a channel, you can type the command /query nickname, where
nickname is the person you want to chat with. Press the enter key, and a query window
will open up and you can start chatting privately, assuming of course that the person is
on IRC. You can find out if a person is on IRC by using the /whois nickname
command.

There is another way to chat privately called DCC Chat. This method is more secure and
usually faster because it does not rely on the IRC Server to relay your messages. Instead
it connects directly to the other IRC Client. However it does need to use the IRC Server
to initiate the chat session.

To DCC Chat with someone, click on the Chat button in the toolbar, and a DCC Chat
dialog will pop up. Enter their nickname, and click on the Chat button, and if they accept
your DCC Chat request, you will be able to start talking to them in private.
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If someone sends you a chat request, a chat dialog will pop up asking you whether you
want to accept their chat request. You can then accept or decline. You can find out more
about DCC Chat related settings in the DCC section.

The /dcc chat <nickname> command is another way of initiating a dcc chat, where
nickname is the user you with whom want to dcc chat.

Note: DCC Chat needs to use your IP address to initiate a connection with another client.
If you are having trouble initiating a connection then your IP address might be wrong.
See the Local section for more information.

5

Send and Receive Files

The ability to Send and Receive files is one of the most useful features of mIRC since it
allows you to share all kinds of information with other people on IRC.

Warning: If you have never shared files before, please read the Accepting Files on IRC
section so as to be aware of the dangers of accepting files from others before you start.

On IRC, a method called DCC Send and DCC Get is used to connect directly to another
IRC client to Send and Get files, instead of going through the IRC network. The IRC
network is used only to initiate the DCC Send request.

DCC Send
DCC Send allows you to send a file to another user. You can do this by clicking on the
DCC Send toolbar button to open the DCC Send dialog. You can then enter the nickname
of the user, select the file you want to send, and click on the Send button.

mIRC will then tell the user that you want to send them a file. The user then has to
accept your send request, at which point the file transfer will begin.

Note: DCC Send needs to use your IP address to initiate a connection with another
client. If you are having trouble initiating a connection then your IP address might be
wrong. See the Local section for more information.

DCC Get
Whenever someone tries to DCC Send a file to you, mIRC pops up the DCC Get and asks
you if you want to accept the file. If you choose to accept the file, mIRC will ask the
sender to begin the file transfer, at which point you should begin receiving the file.

DCC Resume
This feature allows you to resume DCC transfers that failed to complete.

If a user tries to send you a file that already exists in your get directory then you will be
shown a warning that the file exists. You then have the option to either overwrite,
resume, or rename the file.

If you select overwrite then the whole file will be downloaded from the beginning and any
existing file of the same name will be erased.
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If you select resume then mIRC will attempt to negotiate a transfer resume to get the
remaining part of the file. It will append this to the portion of the file you already have.

DCC Options
You can also find other DCC related settings in the DCC dialog which can affect how file
transfers behave.

The /dcc send command
The /dcc send command can also be used to initiate a DCC Send to the specified
nickname. The format of the command is:

/dcc send [-clmn] <nick> <file1> [file2] ... [fileN]

If you specify more than one filename, multiple dcc send sessions to the specified user
are initiated.

If you specify a wildcard filename, then the DCC Send dialog will display files matching
the wildcard.

The -c switch makes the dcc window close automatically once the transfer has finished.

The -l switch limits the transfer rate to the max cps limit specified in the DCC Fileserver.

The -m switch makes the dcc window minimize automatically.

The -n switch allows the transfer rate to exceed the max cps limit specified in the DCC
Fileserver.

Note: If you want to connect to a DCC Server you can specify an IP Address and port
instead of the nickname, eg. /dcc send ipaddress:port

5.1

Accepting Files on IRC and the Internet in General

Sharing files on IRC is part of what makes IRC fun, however it is important to be careful
about who you accept files from and which types of files you accept.

Although most files are safe, there are always a few that may be infected with a virus, or
may be malicious programs that try to damage your computer. Since it is impossible to
know in advance whether a file that is being sent to you might cause a problem,
following a few common sense rules can help:

1) Install anti-virus and firewall software and make sure that they are always up-to-date.
They should  automatically scan any files that you download. However please note that
since IRC is a highly interactive medium where information spreads very quickly, using
anti-virus software does not guarantee that a file will be safe, as it takes time for
anti-virus and firewall software to be updated.

2) Only accept files from people that you know and trust. You should never accept files
from people you do not know and never accept files without knowing what their purpose
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is, even from someone you know.

3) Files ending in .BAT, .COM, .EXE, .DLL have the most potential to cause problems. You
should not accept such files from people you do not know or download them from sites
that do not appear trustworthy.

4) Aliases, Popups, or Scripts that can be loaded or typed into your IRC client can also
cause problems. mIRC, and most other IRC clients, allow you to create scripts that
perform useful functions but these can also cause problems if misused. You should make
sure that you know and trust the source of these files before using them.

5) Certain types of Document files can contain macros which are run by your Word
Processor when you open the document to view it, so these are also potentially harmful.
You should make sure that you have macro-warnings turned on in your Word Processor.
It is also safer to view any documents that you receive in a plain-text editor first if
possible.

6

Change Colors

mIRC uses black text on a white background by default because this allows colored
text to appear clearly and crisply. However, if you find the color scheme too bright, or if
you want something a bit more fun, you can change the text and background, as well as
other specific types of text eg. your own messages, to other colors.

To change the color settings, select the Colors dialog from the View Menu.

To change the color of an item, just click on it and you will see its name appear in the
listbox at the bottom. Then click on any of the colored squares, and you will see the
color of the text for that item change accordingly.

To change the background color, just click on the background itself and select a color
as usual. You can also click on the background of the editbox and the listbox to change
their colors as well.

If you do not like the changes you have made you can either click cancel or you can click
the reset button which will reset the colors back to the default mIRC colors.

To customize the color of one of the color boxes, just click your right mouse button on
it and a custom color dialog will pop up allowing you to choose a new color for it.

Once you have finished making changes, click on the Ok button, and hey presto you
should now feel a bit more colorful!

mIRC also allows you to interactively change the color, as well as the appearance, of
text as you type. You can find out how to do this in the Control Codes section.
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6.1

Control Codes

mIRC interprets control codes in text for Bold, Underline, Reverse, Italic, and Color
and displays text in the specified format.

You can use the following key combinations to insert control codes in text:

Control+B for bold text
Control+U for underlined text
Control+R for reverse text
Control+I for italic text
Control+E for strikethrough text
Control+K for colored text
Control+O for plain text

Examples

To underline a word:

1.Type Control+U
2.Type in the word
3.Type Control+U again

Only the text that is enclosed by the start and end codes will be affected. You can use
this method with all of the other control codes.

To color a word you can use Control+K which allows you to specify a color number:

1.Type Control+K
2.Type a number between 0 and 15
3.Type the word
4.Type Control+K again

If you want to change the background color of a word, you would need to type two
numbers separated by a comma instead of just one number. The first number is the
text color, the second number is the background color.

The colors indexes range from 0 to 15 and are:
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The colors 0 to 15 can vary based on your settings in the color dialog, so every user
might see a different color for these indexes.

You can also use colors 16 to 98 for a range of fixed colors that are the same for all IRC
users.

You can use color 99 for the default text/background color for a line.

Control+K can pop up a color index dialog, depending on your setting in the Keys
dialog.

If you want to enclose existing text in control codes, just select the text with your
cursor, and then type the Control code. This will insert both starting and ending control
codes around the text you selected.

You can enclose text in multiple control codes, so for example you could have a bold,
underlined, and colored word.

Note: If you have the Pop up color index switch turned on in the Options dialog, mIRC
will pop up a small color index showing you each color and its associated number so you
do not have to memorize them.

If you want to strip out control codes from incoming private or channel messages, you
can either change the strip settings in the Messages dialog, or you can use the /strip
command.

7

Options

The mIRC Options dialog allows you to change most of the settings that determine how
mIRC works for you.

Connect IRC Sounds
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Servers
Options
Identd
Proxy
Local

Options
Messages
Catcher
Logging
Flood

Requests
Speech

Mouse
Drag Drop

DCC
Options
Folders
Ignore
Fserve
Server

Display
Options

Other
Lock

7.1

Connect

Before you can connect to a server and start chatting you will need to enter the following
information into the connect dialog.

Nickname
Your nickname is the name by which other people will know you on IRC. There are many
people on IRC, so it is possible that someone might already be using the nickname you
choose. If that is the case, you should choose a different nickname.

You can also enter an Alternative nickname which will be used if someone is already
using your main nickname. If both nicknames are in use, mIRC inserts "/nick" into the
status window edit box so that you can enter a new nickname and press the enter key.

Full Name
This is optional. Whatever you enter here is visible to other people on IRC. You should
normally not enter your real name. Most people enter a comment.

Email Address
This is optional. You can enter your email address here if you wish.

Server
This is the server that you will connect to when you click the Connect button.

New Window
This option allows you to open a new server window so that you can connect to more
than one server at a same time. Just check the new window checkbox and click the
connect button. The checkbox setting is not remembered and will be turned off the next
time you open the connect dialog. To open a new server window without connecting to a
server, you can check the new window checkbox and then press the OK button.

Connect
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Once you have filled in your details and selected a server, you can click the Connect
button to connect to that server.

Hint: If you click your right mouse button on the connect toolbar button, a popup
menu will appear that lists the most recently accessed IRC servers. If you press the
shift key while selecting a server in the popup menu it will open in a new server
window.

7.1.1

Servers

The server you choose to connect to is the most important factor in determining how
quickly and easily you connect. If it is taking a long time to connect to a server, choose a
different one and try again.

A server is usually part of an IRC network. All servers that connect to a specific network
will have the same users and the same channels.

When adding/editing a server, note that each server requires at least a description, an
address, and a port.

An address looks something like "irc.dal.net".

The default port for most servers is 6667. If the server allows connections on different
ports, you can enter them separated by commas, eg. 6667,6668,6669 and a port will be
selected randomly each time you connect to the server. For secure connections to an SSL
capable server, prefix the port with a plus sign, eg. +7001, and to a STARTTLS capable
server, prefix the port with a star sign, eg. *7001.

The group is the name of the IRC network to which the server belongs, to allow you to
group servers for that network together.

A password is usually not needed, so you should not have to enter anything here.

The login method allows you to use a particular login method, if that is needed by the
server you are using. You can also specify a login password. If you need to use SASL,
select that as the method and enter your password as either password or
username:password. If you need to identify your nickname to NickServ, and you use
/nickserv or /msg nickserv on your server, select that as the method.

Note: If you are having problems connecting to an IRC Server, see the Connection
Issues section.

7.1.2

Connect Options

Connect on startup
Makes mIRC connect to the default IRC server automatically when it is run.



mIRC Help16

 

Reconnect on disconnection
Makes mIRC reconnect automatically to a server if you were disconnected and you did
not type /quit.

Show connect dialog on startup
Pops up the connect dialog when you run mIRC.

Move to top on connect
Moves a server to the top of the servers list when you connect to it.

Check connection time out
Pings the server every so often to check that the connection is okay.

Preserve nicknames
If enabled, nickname changes while online will not affect the nicknames you have
specified in the connect dialog.

Invisible Mode
If you turn on invisible mode, people will not be able to see you on IRC unless they
already know your nickname, or if you join a channel or talk to them privately.

Default Port
The default server port that will be used when connecting if one was not specified for that
server.

Perform...
This option allows you to specify a set of commands that you want mIRC to perform
when it connects to a specific IRC network. You can specify a set of commands to be
performed for All Networks, for a specific network, and for any Other networks that are
not specifically assigned their own commands. To understand how commands work, see
the Aliases help section.

Retry...
This option allows you to set the number of times a connection attempt is retried when
connecting to a server.

SSL...
This option allows you to change various SSL-related settings.

Ports...
These options are for advanced users and should normally not be changed.

The Port range option allows you to specify the range of ports that mIRC will use with
server and/or DCC connections. This can be useful if you need to open up a specific
range of ports on your firewall or router for incoming and outgoing connections.

The Randomize ports option makes mIRC use non-consecutive ports when creating
listening sockets.

The UPnP support option makes mIRC use the UPnP feature of your router to open
ports for incoming connections when needed. This greatly simplifies use of the identd
server, file transfers and a number of other features. In order for mIRC to use UPnP, you



17

 

will need to enable UPnP support in Windows and in your router.

The Bind to Adapter or IP address option makes mIRC bind all sockets to a specific
adapter or local IP address, in case you want to use a different outgoing network
connection. If you specify an IPv4 or IPv6 adapter/address, DNS resolution and all
connections will be made based on the adapter/address type. If you explicitly specify an
IP address for a connection, such as in a /server or DCC connection, it overrides this
setting. This option affects all features in mIRC, including commands such as /server and
/dns.

The If bind fails, use system default option will try to use the default system adapter
if the bind to the specified adapter or IP address fails. If you are using a VPN to keep
your IP address private, you should disable this option.

The Enable IPv6 support option option allows mIRC to connect to IPv6 addresses.
When you enable this option, mIRC will retrieve DNS results for both IPv4 and IPv6 and
will prioritize IPv6 when connecting to servers. If no IPv6 addresses are available, IPv4
addresses are used. This option affects all features in mIRC, including commands such as
/server and /dns.

7.1.3

Identd

mIRC can act as an identd server and will send the specified User ID and System as
identification. This server will be more useful to some people than others. In general it is
better to leave it active as some systems might refuse a connection if there is no reply to
an identd request.

Enable Identd Server
Check/uncheck this to turn the identd server on or off

User ID
This can be your account or user name on your system. For most people this will be the
User ID portion of their email address (the text before the @ sign). Valid characters for a
User ID are: . 0-9 A-Z _ - a-z

System
This identifies your operating system. For all intents and purposes, replying with a value
other than UNIX would not be very useful for most people.

Port
This should usually be 113.

Show Identd requests
This displays any identd requests sent to your identd server if it is turned on.

Enable only when connecting
This turns the identd server on only when you are connecting to an IRC server. The
moment an identd request is received and replied to, or the moment you connect to the
IRC server and see the MOTD, the identd server is turned off.
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Note: This server will reply to all identd queries sent to the specified port ie. it is not
limited to replying to an IRC server for mIRC. If you have turned on the identd server
and it is not replying to identd queries then it is probable that the type of internet
account you have is preventing mIRC from replying, or that another program is running
which has control of the identd port.

Use ID from email address
Makes mIRC use the User ID from your email address in identd replies.

The /identd command
You can also use the /identd [on|off] [userid] command to change the above
settings.

7.1.4

Proxy

mIRC can connect to an IRC Server through a Socks4 or Socks5 firewall, or through a
Proxy.

Connection
You can choose to enable proxy support for server connections, DCC connections, or
both.

Protocol
You can select either Socks4, Socks5, or Proxy. Socks4 and Proxy are limited in
functionality and only allow server connections.

Note: mIRC uses a passive protocol to establish DCC connections when a client is behind
a Socks5 firewall. This will not work with older versions of mIRC or other IRC clients
because no standard exists. You can find out more about the protocol here.

Hostname
The address of your firewall server, can be either a named address or an IP address.

User ID
Can be the account or user name on your system. For most people this will be the User
ID portion of their email address (the text before the @ sign).

Password
The password required to access the firewall.

Note: If you are connecting via a proxy, and you enter a password, mIRC only supports
http proxy basic authorization.

Port
This is usually 1080 for Socks firewalls.

Exception masks
If you have the firewall enabled but would like to connect to some servers directly, you
can enter their addresses here. Wildcards may be used. Any server addresses which
match the exception masks will not use the firewall.
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The /proxy command
This command allows you to change the above firewall settings.

/proxy [-cmN[+|-]d] [on|off] <server> <port> <userid> <password>

The -c switch clears the userid and password values.
The -mN switch set the connection type, where N is 4 or 5 for Socks4 or Socks5, or p for
proxy.
The +|-d switch turns DCCs through a firewall on or off.

7.1.5

Local

Your Host name and IP address are required when using the DCC features in mIRC.
mIRC will try to retrieve these values itself however in some cases you may need to
change the settings yourself.

Local Host
If mIRC is unable to retrieve your local host name, and replies with the message Unable
to get local host, then you will have to fill in your local host name manually. mIRC will
then use whatever you have entered to get your IP address.

IP Address
If mIRC is unable to retrieve your IP address then you will need to enter it manually. If it
is not correct then you will not be able to initiate DCC sessions.

On connect, always get...
These options allow you to change the way the local host and IP address are retrieved.
There are many different types of Internet connections, so you will need to change these
settings yourself to see which combination works best for you. If you do not know what
kind of connection you have, you should normally leave both of these options checked.

Lookup Method
If you find that mIRC is not resolving your IP address correctly you might try changing
from Normal to Server or vice versa. With the Normal method, these details are
retrieved locally. With the Server method, they are retrieved via the IRC Server.

Note: If changing the above switches does not solve the problem, or you do not know
what to enter for your local host or IP address, you will need to contact your Internet
Provider or System Administrator.

7.2

IRC

Prefix own messages
If this is selected, your nickname will prefix any messages you type in a
channel/query/chat.
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Show mode prefix
If turned on, mIRC will prefix nicknames in channel messages with their .@%+ mode on
a channel.

Minimize query window
If someone sends you a query, the default is for the query window to open, ready for
input. You can select this option to force mIRC to minimize the window preventing it from
taking the focus from the window you are currently in.

Use query for notify nicks
If the single message window option is enabled, and a user who is in your notify list
messages you, mIRC will open a query for that nickname, over-riding the single message
window option.

Whois on query
Select this to have mIRC do a /whois nickname on any person that sends you a private
message. The /whois will be done the first time the query window is opened.

Use single message window
This directs all private messages from other users to one single message window. You
will need to use the /msg command to reply. If you want to open a query window to a
user, use the /query window.

Note: You can press the Tab key while in the message window to cycle through the list
of nicknames who have recently messaged you.

Copy messages to query
If you are talking to a user in the single message window and then decide to open a
/query to the user, this copies the conversation you have had so far from the single
message window to the query window.

Auto-join channel on invite
This will make you automatically join a channel when you are invited to it. mIRC will also
try to minimize the window, however this might not always work.

Rejoin channel when kicked
If you are kicked from a channel, mIRC will immediately try to rejoin the same channel.
It will not close the channel window unless it finds that you cannot rejoin the channel.

Rejoin channels on connect
If this switch is turned on, mIRC will automatically rejoin channel windows which are
open when you reconnect to an IRC server after being disconnected.

Keep channels open on kick/disconnect
This will keep a channel window open if you are disconnected from the server or kicked
from a channel.

Keep channels open on part
This will keep a channel window open after you have parted the channel.

Hide channel key
If this is turned on, mIRC will not display the channel key in the channel window titlebar.
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Show invites in active window
If this setting is turned off then invite messages will appear in the status window.

Show queries in active window
Shows all queries in the active channel window instead of opening up a query window.
However, if you are not in a channel window, a query window will be opened.

Show notices in active window
Shows all notices in the active window instead of in the status window.

Show whois in active window
Shows /whois results in the channel, query/chat, or custom windows if it is turned on and
if a /whois is issued inside one of these windows, otherwise all /whois results are shown
in the status window.

Show Ctcps in active window
Shows all Ctcp messages in the active window instead of the status window.

Show Away in active window
If you have a query window open to a user, their away message will be displayed in the
query window if this option is enabled, otherwise it will be displayed in the status
window.

Events...
The events dialog allows you to change the default display settings for channel-related
events, such as joins, parts, etc. You can change the settings for individual channels via
the System Menu of a channel window.

7.2.1

IRC Options

Show short joins/parts
Checking this option makes mIRC display the join and part messages in a different, more
compact format.

Show user addresses
Display user addresses in events such as joins/parts/quits/invites on channels.

Show nicks on join
Displays channel nicknames in the status window when you first join a channel.

Flash on...
These set the default flash option for any newly opened channel, query, or dcc chat
window.

Skip MOTD on connect
This makes mIRC hide any MOTD information which the server sends you when you first
connect to it.

Hide ping? pong! event
Occasionally an IRC server will send a ping to mIRC to check whether it is still connected.
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If you prefer not to see the "Ping? Pong!" message in the status window you can enable
this option.

Cancel away on message
If you set yourself as away using the /away command, selecting this option cancels the
your away status automatically the next time you send a message to a channel or a
query/chat window.

Hide away reminders
Hides repeat away messages in active query windows for ten minutes.

7.2.2

Messages

Timestamp events
This option timestamps various types of incoming/outgoing messages with the current
time and date, using the format found in $asctime().

Strip codes
This allows you to strip out the Control Codes codes from incoming private messages or
channel messages.

Ctcp finger reply
The message a user receives when they /ctcp finger you.

Quit message
The message displayed to other users when you quit IRC.

Split long channel/query messages
If you type a message that is long enough that it might be chopped by the maximum
message length allowed by a server, this option makes mIRC split the message into
several smaller messages to make sure that it is sent intact.

7.2.3

Catcher

This feature looks for any text that looks like a URL or Email address in incoming
messages and saves it for your future reference.

Enable catching for...
If this option is turned on mIRC will catch references to URLs and Emails and store them
in the URLs list window.

mIRC looks for URLs beginning with "http://", "ftp://", "gopher://", "www.", and "ftp.".
mIRC also checks to make sure addresses are not added to a list if they already exist.

mIRC will also catch any text that looks like an email as long as the word "mail" is
mentioned in the same line of text as the email address.
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Chat links
These options enable or disable support for chat links, and allow you to specify whether
you want a confirm dialog to be displayed whenever a chat link asks mIRC to connect to
a server.

Web browser
When you open a URL, mIRC can optionally open a new browser window and activate it if
required.

Place ? items at top
If this is checked then mIRC will place ? marked URLs at the top of the URL list,
otherwise they will be placed at the bottom of the list.

Delete ? items on exit
To prevent your URL list getting too long you can choose to have all ? marked items
deleted when you exit mIRC. Any items whose marker has been changed to something
other than ? will remain in your list for future reference.

On Send
When sending URLs to a channel, query, etc. mIRC can send only the URL or both the
URL and description.

Hint: You can click your right mouse-button in the URL window for a popup menu which
provides various URL functions.

7.2.4

Logging

This section allows you to changed various options relating to the logging of your
conversations on IRC.

Automatic log and reload...
This enables automatic logging for all channel or chat windows. This also enables
reloading of the most recent logs (up to a maximum of 1000 lines) when a channel or
chat window is opened.

Lock log files
If this switch is turned off and your log files are being saved properly then you should
leave it turned off, otherwise turn it on.

Trim log files
This option limits the size of your log files to the specified size, each time they grow
beyond this maximum the oldest part of the log at the top of the file is trimmed off so
that the most recent part remains.

Timestamp logs
If this option is enabled, all lines in a log file are timestamped using the format found in 
$asctime().

Strip codes
This makes mIRC strip any Bold, Underline, Reverse, or Color control codes from text
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that is being logged to a file.

Line colors
If turned on, lines saved to the log file will be prefixed with the line's color.

Include network
If turned on, the name of irc network is included in the log filename.

If you enable the make folder option, a separate logs folder is created for each unique
network that you use.

Date filenames
This makes mIRC create filenames which are prefix with the current date to allow you to
organize your logs by date.

You can choose to have filenames dated by day, week, or month. If dated by week, log
files begin on days 1, 7, 14, and 21, and if dated by month, they begin on day 1 of that
month.

Channel log files dated by day are closed at 12am and re-opened with the new date.

If you turn on the except status switch, the status window will not have its logfiles
dated.

Logs and Buffer saves folder
The folder in which all log files and buffer saves are stored.

7.2.5

Flood

Flood protection attempts to prevent you from flooding a server with messages sent in
response to requests from other users via CTCP or a script.

Flooding usually results in your being disconnected from IRC servers since they place a
limit on how much information you can send at one time.

mIRC will count the number of bytes you send to a server, and will initiate a flood check
if you exceed a certain maximum number of bytes.

Trigger flood check after...
This is the number of bytes at which mIRC should check if it might be flooding the server
or not. Setting this greater than 500 bytes is not too helpful since that might be the
maximum amount a server allows. The lower the number, the more sensitive mIRC will
be, and the slower it will reply. Default 400.

Max. lines in buffer
The maximum number of lines mIRC will buffer.

Max. lines per person
The maximum number of messages a user can have in the buffer.
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Ignore person for...
How long to ignore a user who has exceeded their maximum number of buffered
messages. If zero, no ignore is done.

Enable protection for...
This enables flood protection for ctcp replies, whois requests, and query windows.

Queue Op commands
If this is enabled, the MODE and KICK commands are also queued in the flood queue.

Queue own messages
If this is enabled, all of your own messages, such as notice and private messages, are
queued in the flood queue.

Show status updates
Displays the flood queue status a) when there is a new item in the queue, b) every 10
seconds, if the queue status changed, and c) when the queue becomes empty.

The /flood command
This command allows you to turn flood protection on or off and to change the above
settings. Typing /flood with no parameters gives you the current flood status. You can
type /flood on to turn flood protection on with the default settings.

/flood [+c|-c] [on|off|clear] <bytes> <maxlines> <maxmessages> <ignoretime>

/flood 200 10 2 30

Here mIRC will check for flooding if it has sent 200 or more characters to the server, will
buffer a maximum of 10 lines and ignore the rest, will only allow each user 2 buffered
lines, and will ignore a user for 30 seconds if that user exceeded the maximum number
of buffered messages.

You can also use +c or -c to enable or disable the ctcp flood protection.

The flood protection method also performs intelligent queuing in order to satisfy the
maximum number of users as quickly as possible, so that no single user can hog the
queue.

7.3

Sounds

Enable sounds
This enables or disables the playing of all sounds in mIRC.

On Event, play sound...
This allows you to associate sounds with specific events, eg. for the disconnect event, if
you are disconnected by the server without having typed /quit or selected the disconnect
menu item, then mIRC will beep or play the specified sound to indicate that you are no
longer connected to IRC.

Beep on message...



mIRC Help26

 

This makes mIRC beep whenever a message is sent to a channel, query, or dcc chat
window that is not currently the active window or while you are scrolling back through
the buffer.

Event beep
Sets the number of event beeps that are played on an event, as well as the millisecond
delay. To turn off notification all together, specify zero beeps.

Use internal beep
Makes mIRC use its own internal beep sound for events instead of the default windows
sound.

7.3.1

Sound Requests

Sound requests allow you to play sounds on a channel or in a query. When someone uses
the /sound command, all users on the channel or in the query who have that same
sound will hear it play.

Accept sound requests
If this option is turned on, mIRC will listen for /sound requests from other users.

On sound request...
If a sound is already playing and a new sound request is received, you can either have
mIRC halt the currently playing sound and play the new sound, or you can choose to
have mIRC ignore the new sound.

mIRC can also warn you if a user has requested a sound that you do not have so that
you can then ask the user for that sound.

Listen for !nick file get requests
If someone sends you a message starting with an exclamation mark prefixing your
nickname mIRC will assume that they are requesting a sound file from you and will
search your sounds directory for the file. If it finds it, it dcc sends it to the user.

Send !nick file as private message
If this option is turned off and you send the message !nick file to a channel, everyone on
the channel will see it. if you prefer not to crowd the channel with these messages, you
can turn this option on and the user will receive the message privately.

Locations of sound files
Whenever a sound is requested, mIRC will look in these directories and all of their 
subdirectories for it. These directories are also searched when you use the /splay
command.

The /sound command
You can send a sound request to another user using the /sound command.

/sound [on|off|nick/channel] <file.wav|file.mid|file.mp3> <message>

If a nick/channel is not specified, the message is sent to the current channel or query
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window.

The sound file must end in .wav, .mid, or .mp3, and may be located in the default
sounds directory or in any of the subdirectories in the sounds directory. You do not need
to specify a directory for the filename unless the file is not in the sounds directory.

The message is optional, if you do provide one it appears exactly like an action
command.

7.3.2

Speech

mIRC can speak the messages that you receive from other users in channels and private
chats. Note that in order for this feature to work, your version of Windows must have a
speech component installed.

Options
The options dialog allows you to change the way text is spoken, such as the speed and
pitch of the speaking voice.

Events
The events dialog allows you to specify the events that you want spoken for channel,
private, and other events.

Lexicon
The lexicon dialogs allows you to replace words or characters in spoken text with other
words or characters, for example you could replace ":-)" with the words "smiley face".

Agent
The agent dialog allows you to configure the use of Microsoft Agent. An agent is an
animated character that can speak text and perform actions. You can select your default
agent character, the size of the character, and various display options. The auto-hide
feature hides the agent whenever mIRC is minimized, though note that if agent needs
to speak it will become visible again.

Note: The agent dialog will only be visible if agent is already installed on your system. If
it is not installed, you can find links to related websites and resources, as well as
download information, on the mIRC website.

The /speak command
You can make mIRC speak text by using the following command:

/speak -spclu [speed] [pitch] [text]

If mIRC is already speaking text then the above command will add the new text to the
end of the queue.

The -s switch sets the speaking speed, which ranges from 0 to 100.
The -p switch sets the speaking pitch, which ranges from 0 to 100.
The -c switch clears the queue of all text
The -l switch applies the lexicon settings in speech dialog

http://www.mirc.com
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The -u switch applies the option settings in speech dialog

The $speak() identifier
You can use $speak(N) to list all lines that are currently queued for speaking through the
/speak command. If N = 0, returns the total number of queued lines.

7.4

Mouse

The double-click feature allows you to specify a set of commands that will be executed
whenever you double-click in a certain window.

For example, for the channel nickname listbox you could enter:

/query $1

which means that when you double-click on a nickname, a query window opens up and
you can start talking with that nickname privately.

7.4.1

Drag Drop

The Drag Drop feature allows you to pick up files from other programs eg. a file
manager, and drop them on either Message or Channel windows. Depending on the
type of file you drop onto a window, a different action will be performed according to the
commands you have defined for that file type.

You can define different actions for different types of files by associating a command
with a file ending.

For example, if you wanted to mIRC to read a text file to another user whenever you
drop files ending in .txt then you might make an association such as:

*.txt:/play $1 $2-

In this case, $1 stands for the name of the user or channel where the file has been
dropped, and $2- stands for the name of the file that was dropped. The /play command
would send each line in the specified text file to the user.

You can also have different aliases executed for the same file type depending on whether
you hold down the shift key or not when you drop the file.

Currently the default settings for dropping files with no shift key pressed are:

*.wav:/sound $1 $2-
*.*:/dcc send $1 $2-

Which means that if you drop a Wave file, it will be played with the /sound command,
and if you drop any other type of file it will initiate a dcc send to that user.
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The default settings for dropping files with the shift key held down are:

*.*:/dcc send $1 $2-

Which is the same as above, initiating a dcc send to the active user.

Note: If you drop a file which has a space in it, it is enclosed in "" quotes.

7.5

DCC

DCC allows you to connect directly to another IRC client, instead of going through the
IRC Network, to Send and Get files, and to Chat privately over a more secure
connection.

On Send request
This option determines how mIRC behaves when someone tries to send you a file. By
default, mIRC will pop up a dialog asking you if you want to accept the file, however if
you select the Auto-get file option then mIRC will automatically accept the file. If you
select Ignore All then all incoming dcc send requests are ignored.

If you choose to accept the file, mIRC will ask the sender to begin the file transfer, at
which point you should begin receiving the file.

If someone tries to send you a file that already exists in your get directory then you will
be shown a warning that the file exists. You then have the option to either overwrite the
file, resume the transfer, or rename the file.

If you choose to overwrite the file then the whole file will be downloaded from the
beginning and any existing file of the same name is erased.

If you select resume then mIRC will attempt to negotiate a transfer resume to get the
remaining part of the file.

If Auto-get and File exists
In the case where you have turned on the Auto-get file option, and you already have a
file of the same name in your download folder, you have the option of mIRC popping up
a dialog to ask if you want to accept the file, or to automatically resume or overwrite the
existing file.

Trusted Users
This section allows you to add a list of trusted nicknames, addresses, or user levels, from
which mIRC will automatically accept dcc sends.

You can also use the /dcc trust [-r] <on | off | nick | address | level>[:network]
command to change the trust list.

If you append :network to the address, where network is the network name, it will make
the trust item network-specific.
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Note: Please read about the dangers of Accepting Files on IRC before you accept files.

On Chat request
This option determines how mIRC behaves if someone sends you a chat request. By
default, mIRC will pop up a dialog asking you if you would like to accept the chat
request, however you can make mIRC automatically accept the chat request, or just
ignore all incoming chat requests. 

The /dcc nick -sgcf <oldnick> <newnick> command allows you to change the
nickname associated with a dcc send/get/chat/fserve and is used in the dcc remote event
definition.

DCC Options

On completion
When a file transfer is completed, or a chat session ends, you can make mIRC close the
window automatically, as well as beep to audibly indicate the end of a dcc session. The
beep options depend on the settings in the Event Beeps dialog.

Time-out in seconds
When a user sends you a Send or Chat request, a dialog pops up and waits for you to
accept or decline. The Get/Chat Dialog time out value determines how long the dialog
will wait for your reply before it closes.

During a file transfer mIRC will wait the number of seconds specified in the Send/Get
Transfer Time Out settings for a response from the other client before closing the
connection.

The Fileserver Time Out determines how long a user in a Fileserver session can remain
idle before mIRC closes the connection.

Max Sends
This limits the number of simultaneous remotely initiated DCC Sends mIRC will handle.

Note: This applies to users who request a DCC Send remotely ie. via a script file or via
the DCC Server, not if you initiate a DCC manually.

Show Warning
Displays the incoming file warning.

Passive DCCs
Initiates passive DCC sends and chats, which might help if you are having trouble
sending or chatting to other users.

You can also use the /dcc passive [on | off] command to enable or disable passive dcc
connections.

Minimize Sends
If enabled, dcc send windows will be minimized automatically.

Fill Spaces
Replaces spaces in long filenames with an underscore character. For more information
read this.
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Packet Size
The number of bytes that mIRC will send to another client in one packet.

DCC Folders

DCC Get Folders
This allows you to specify dcc get directories where received files will be placed according
to their extension. Files which do not match any of the extensions you specify are placed
in the default get directory.

If you specify a command to be performed when a file is downloaded, the $1- identifier
refers to the filename.

You can manually redirect an incoming dcc send to a specific folder with /dcc get
<folder>. You can use /dcc reject to reject the dcc send. Both of these commands
must be called from within the CTCP event or the on DCCSERVER send event. $filename
returns name of file.

DCC Ignore

Accepting or Ignoring files
This allows you to specify the types of files that you want mIRC to accept or ignore
automatically when someone tries to send you a file.

You can also use /dcc ignore [on | off | accept | ignore] to turn this feature on or off.

Turn ignore back on
This option turns dcc ignore back on after a while if you manually turned it off
temporarily in order to accept a file.

DCC Fileserver

Max. Fileservers
This limits the number of fileserver sessions that can be open simultaneously.

Max. Gets per user
This limits the number of simultaneous DCC Gets a user can request.

Total Max. Cps
This limits the maximum cps used by all dcc sends being sent by a fileserver.

The /dcc maxcps <N> command can be used to changed the Max Cps value on the fly.

Note: This setting is also applied to /dcc sends initiated in a script that responds to a
server event. You can override this by using /dcc send -n which applies no cps limit.

Root folder
This specifies the root directory that a user will see when they first enter a fileserver
initiated via the DCC Server. The user will be able to access all files and directories within
this root directory.

Welcome text file
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This specifies the welcome text file that will be sent to a user when they first connect to a
fileserver.

Show fileserver warning
If this option is checked, the fileserver warning is displayed whenever the /fserve
command is used to initiate a fileserver session. To learn more about fileservers see the 
File Server section.

DCC Server

The mIRC DCC Server listens for direct connections to your IP address from other mIRC
clients.

Enable DCC Server
This turns the DCC Server on or off.

Listen on Port
The DCC Server listens on port 59 by default, however you can change this to another
port number.

Listen for...
You can have the DCC Server listen for only certain types of connections, such as DCC
Sends, Chats, or Fileserver requests. For example, if you turn off the DCC Chat listen
option, the DCC Server will ignore any chat requests.

Perform DNS lookup
When someone connects to your DCC Server only their IP address is available for
identification. If you check the DNS lookup switch, mIRC will perform a /dns on the IP
address to try to resolve it to a named address.

Note: It can take anything from a second to more than minute to resolve an address
depending on network conditions, and sometimes it may not resolve at all.

The /dccserver command
You can change the settings of the DCC Server from the command line using:

/dccserver [+|-scf] [on|off] [port]

You can Send/Chat to the DCC Server using the DCC Send/Chat dialogs and specifying
an IP address instead of a nickname.

From the command line, you can use /dcc [send|chat|fserve] with an IP Address instead
of a nickname to initiate a connection to the DCC Server.

Note: /dcc fserve only works for IP address connections and does not work via IRC.

Technical specifications
For a technical explanation of how various DCC protocols are implemented in mIRC see
the pages Server, Resume, Socks5, and Long File Names.
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7.5.1

DCC Resume Protocol

User1 is sending the file.
User2 is receiving the file.

To initiate a DCC Send, User1 sends:

PRIVMSG User2 :DCC SEND filename ipaddress port filesize

Normally, if User2 accepts the DCC Send request, User2 connects to the address and port
number given by User1 and the file transfer begins.

If User2 chooses to resume a file transfer of an existing file, the following negotiation
takes place:

User2 sends:

PRIVMSG User1 :DCC RESUME filename port position

filename = the filename sent by User1.
port = the port number sent by User1.
position = the current size of the file that User2 has.

User1 then responds:

PRIVMSG User2 :DCC ACCEPT filename port position

This is simply replying with the same information that User2 sent as acknowledgement.

At this point User2 connects to User1 address and port and the transfer begins from the
specified position.

Note: Newer versions of mIRC ignore the filename since the port uniquely identifies the
connection. However to remain compatible with older versions of mIRC the filename is
sent as file.ext in both RESUME and ACCEPT.

7.5.2

DCC Server Protocol

Chat Protocol
Client connects to Server and sends:
100 clientnickname
When Server receives this, it sends:
101 servernickname
Connection is established, users can now chat.

Fserve Protocol
Client connects to Server and sends:
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110 clientnickname
When Server receives this, it sends:
111 servernickname
Connection is established, user can now access fserve.

Send Protocol
Client connects to Server and sends:
120 clientnickname filesize filename
When Server receives this, it sends:
121 servernickname resumeposition
Where resumeposition is between 0 and filesize, and is required.
Connection is established, and Server dcc gets the file.

Get Protocol
Client connects to Server and sends:
130 clientnickname filename
When Server receives this, it sends:
131 servernickname filesize
When Client receives this, it sends:
132 clientnickname resumeposition
Where resumeposition is between 0 and filesize, and is required.
Connection is established, and Server dcc sends the file.

Other
If server receives unexpected information, or does not receive info 15 seconds after
initial connection, it closes the connection.

If service is unavailable, server sends:
150 unavailable

If server rejects connection, it sends:
151 rejected

Notes:
The Get protocol has been implemented in this way mainly because I am assuming:

  1) The client may not be able to open a socket to listen for and accept a connection
(firewall etc.)

  2) The DCC Server may only be able to listen for connections on port 59 (firewall etc.)

  3) Since the client was able to connect to the DCC Server the first time, it should have
no problem connecting to the same port again.

Currently the Get Protocol is only used by the Fileserver when a user who has connected
to a Fileserver via the DCC Server requests a "get filename". All other attempts to Get a
file via the DCC Server are ignored.

7.5.3

DCC Socks5 Protocol
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mIRC uses a passive protocol to establish DCC connections when a client is behind a
SOCKS5 firewall.

The method will work with SOCKS5 firewalls that both:

  i) Support listening/binding to a port of Zero for an incoming connection.
  ii) Assign outgoing connections an IP address that is the same as the SOCKS firewall IP
address.

The DCC Send/Chat CTCP messages are extended by adding an extra number to the end
of the message which uniquely identifies the negotiation, and a port of Zero is specified
to indicate that this is a passive connection request. All other fields are identical to a
standard DCC Send/Chat message.

DCC Chat Passive Protocol
Client A, initiating the DCC Chat, sends the passive connection request below to Client B.
The port is set to zero, and the id number is a unique integer identifying the connection:

  DCC CHAT nickname address port id

If Client A is behind a firewall, the address is the ip address of its SOCKS firewall.

Client B receives the message and sets up a listening socket, and sends the IP address
and port back to Client A, specifying the id number that identifies Client A's request:

  DCC CHAT nickname address port id

If Client B is behind a SOCKS5 firewall, it requests a listening socket from the SOCKS5
firewall and specifies Client A's IP address as the binding address.

Client A then proceeds to connect to this address to chat. If Client A is behind a SOCKS
firewall, it sends a connection request to it.

DCC Send Passive Protocol
Client A, initiating the DCC Send, sends the passive connection request below to Client B.
The port is set to zero, and the id number is a unique integer identifying the connection:

  DCC SEND filename address port filesize id

If Client A is behind a firewall, the address is the ip address of its SOCKS firewall.

Client B receives the message and sets up a listening socket, and sends the IP address
and port back to Client A, specifying the id number that identifies Client A's request:

  DCC SEND filename address port filesize id

If Client B is behind a SOCKS5 firewall, it requests a listening socket from the SOCKS5
firewall and specifies Client A's IP address as the binding address.

Client A then proceeds to connect to this address to begin the transfer. If Client A is
behind a SOCKS firewall, it sends a connection request to it.

Note: The DCC Resume and Accept protocols in mIRC are also extended by adding the id
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number to the end of the CTCP message, but otherwise work in exactly the same way.

7.5.4

Long File Names With.Spaces In Them

The DCC protocol does not take into account the possibility of a filename containing
spaces, so most if not all IRC clients will incorrectly interpret the following DCC Send
message:

PRIVMSG nick :DCC SEND This is a long file name with.spaces in it ipaddress
port filesize

The Fill Spaces option will make mIRC fill spaces in a filename with the underscore
character _, which should then allow other clients to interpret the message correctly:

PRIVMSG nick :DCC SEND This_is_a_long_file_name_with.spaces_in_it
ipaddress port filesize

If the Fill Spaces option is not selected, mIRC sends "Long File Names with.Spaces in
them" enclosed in quotes. For example:

PRIVMSG nick :DCC SEND "This is a long file name with.spaces in it" ipaddress
port filesize

7.6

Display

Multi-line toolbar
If this option is turned on, the toolbar is wrapped onto multiple lines if necessary when
the main window is resized.

Always highlight
Turning this on makes mIRC highlight buttons/icons whenever a new message appears in
a window, even if the window is visible.

Flash icons
Flashes the icons in switchbar/treebar buttons for query/chat windows if there is a
message/highlight event, or a flash event.

Fill switchbar
This option stretches buttons to fill the whole of the switchbar to make them easier to
click.

Include DCCs
This option allows you to choose between showing DCC Send/Get windows as buttons in
the switchbar or as normal icons.

Include desktop windows
If enabled, buttons for desktop windows are displayed in the switchbar. If disabled,
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buttons for desktop windows are hidden from the switchbar.

Sort buttons
If this option is turned on, window buttons are sorted alphabetically as opposed to the
order in which windows were opened.

Buttons
This sets the default size of the switchbar buttons.

Lines
This sets the height of the switchbar so as to display one or more rows of window icons.
If set to Auto the switchbar automatically resizes as window icons are added or
removed.

Event, Message, Highlight
Whenever a new message is displayed in a channel or query window, mIRC highlights
the switchbar icon for that window with the chosen color. The event color is used for all
non-message events, such as joins, parts, modes, etc. The Message color is used for
actual messages, and the Highlight color is used for highlighted messages, ie. messages
that match your Highlight settings.

7.6.1

Display Options

mIRC titlebar
This allows you to specify text that will be shown in the mIRC title bar.

Line spacing
This allows you to set the default line-spacing for messages in channels and chat
windows.

Note: You can change the line-spacing for individual windows via the System Menu.

Editbox lines
This option allows you to choose between using a single-line editbox, a multi-line
editbox which is two lines in height, and an automatic editbox, which dynamically
changes height, up to the half  the height of the window, to show all of the lines you
have typed in.

Hint: If you type / into an editbox and press the enter key, it will show the last line you
entered in that editbox. If you type /! it will show the last line you typed in the last
window you were in.

Marker
When you minimize a channel or query window, or make it inactive, the line marker
shows you where new messages have arrived since you last looked in the window. This
allows you to scroll back and easily see which messages you have missed. You can press
Control+L to scroll back to view the line marker. The line marker is only updated after
you have scrolled back to view it.

Tips
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Allows you to change the Tips settings.

Tray
Allows you to change the Tray settings.

Windows
Allows to you to make specific windows open as desktop windows, ie. outside of the main
mIRC window. This means you can keep specific windows open on the desktop and keep
mIRC minimized at the same time.

You can also enable transparency for any mIRC windows that you place on the desktop
.

If hide desktop windows when minimized is enabled, you can hold down the shift
key when minimizing to prevent the window from being hidden.

7.6.1.1

Tray

Always show mIRC icon in tray
Turning this option on makes mIRC always display an mIRC icon in the tray, even when
it is not minimized.

On startup minimize mIRC to tray
This option makes mIRC automatically minimize to the tray when it is first run.

Place mIRC in tray when minimized
If this option is turned on, the mIRC window is hidden when you minimize mIRC, and a
small mIRC icon appears in the tray.

If this option is turned off, you can force mIRC to minimize to the tray by holding down
the Shift key when you minimize mIRC.

If you hold down the Shift key when you quit mIRC, the next time you run it, it will be
minimized.

If you right-click on the mIRC icon in the tray, a popup menu listing your current
channels/queries appears; those that have a check mark next to them have had their
icons highlighted due to incoming messages. You can click a menu item to open the
window.

If you double-click on the mIRC tray Icon and mIRC is the active window, it will be
minimized, if it is already minimized, it will be restored.

Animate icon when there is activity
This option animates the mIRC tray icon by flashing the letters in the icon when there is
activity, and by turning the icon purple when it is connected, as well as showing a
revolving planet when trying to connect to an IRC Server.

Single click on tray icon to open
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By default mIRC requires you to double-click on the tray icon to open and close the mIRC
window. This option allows you to open and close mIRC with a single click on the tray
icon instead.

Location and name of icon to use in tray
This allows you to specify a different icon in place of the standard mIRC icon in the tray.

/tray -iNmNsNtNaN <filename>
This command changes the mIRC Tray icon to the Nth icon in the specified file (which
might be an .exe, .dll, or .ico).

The -msta switches enable or disable the tray settings in the Options dialog, where N is
0 or 1.

Note: The animate icon option cannot work if you have selected a custom icon.

7.6.1.2

Tips

Tips are text balloons that pop up near the Windows tray to notify you of various
events such as incoming messages or users in your notify list coming on or leaving IRC.
Tips only appear when mIRC is not the active application and are hidden the moment
mIRC becomes active.

Events
Tips can be enabled for channel, private, and other events.

Queue Size
This setting limits the maximum number of queued tips. If a new tip is added to the
queue while the queue is full, the oldest tip is removed. New tips are queued until older
tips time-out. Tips time-out at a slower rate if they are not at the head of the queue.

Display Time
Each tip is displayed for at least the number of seconds specified in the tips dialog. For
tips with long messages, display time is automatically extended based on the size of the
message.

Hide tips when full screen application is active
Tips can be set to be hidden whenever a full screen application becomes active. This
applies to both game and non-game applications.

Tips Commands and Identifiers

/tips [on|off]
Turns tips on or off.

$tips
Returns $true or $false depending on whether tips are on or off.

$tip(name,title,text,delay,iconfn,iconpos,alias,wid)
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Allows you to create scripted tips that are independent of normal tip events. Returns Nth
position of tip if it was successfully created, zero if not.

name - name of the tip
title - title
text - text
delay - from 3 to 60 seconds
iconfn - icon filename
iconpos - icon position in filename
alias - alias to perform when tip is double-clicked
wid - id of window to which tip belongs

name, title, text are required.
delay, iconfn, iconpos, alias, and wid can be $null.

$tip(name/N)
Returns properties for the specified tip.

Properties: name, title, text, delay, iconfn, iconpos, alias, wid

/tip <-ct> <name/N> [text]
Manipulates an existing tip, where -c closes the tip and -t changes the text of the tip.

Other features
Right-clicking in a tip pauses the time-out for all tips.

Left-clicking in a tip while pressing the shift key closes that tip.

Double-clicking in a tip triggers the alias if one is defined, or opens the associated
window if not.

A tip automatically fits the text into it and will at most widen to quarter of your screen
width.

If window id is not specified, the tip belongs to the status window of the currently active
connection.

A tip is closed if the window it belongs to is made active or is closed or if mIRC is made
active and the tip belongs to an MDI window. This does not apply if you are using $tip()
to create and manage your own tips.

The Highlight dialog in the Address Book also supports tips.

7.7

Other

Command Prefix
The default standard prefix to a command is a / character, however you can specify
another character if the / key is hard to access on your keyboard. Regardless of the
character you choose here, mIRC still recognizes the / character and uses it internally.
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Window buffer
This limits the scrollback buffer to the specified number of lines. Note that if a scrollback
buffer already contains more than the specified number of lines it will be shortened. You
can always use the /clear command in a window to clear the scrollback buffer
completely. If you are scrolling back through the buffer, lines will not be removed until
you return to the bottom of the buffer.

Line separator
You can specify a line separator to be used in the status window. You can use a space to
have a blank line. If you leave the box empty, lines in the status window will not be
separated.

Confirm

When closing status window, confirm if...
Pops up a confirmation dialog if you try to close a status window, if any of the checked
items apply.

When closing mIRC, confirm if...
Pops up a confirmation dialog asking you if you would like to close mIRC, if any of the
checked items apply.

Confirm toolbar disconnect...
Requires you to press the toolbar disconnect button twice to disconnect from a server.

Confirm when pasting more than...
Pops up a dialog asking if you really intended to paste the specified number of lines.

Confirm when using a command...
Pops up a dialog asking if you really intended to run a command or script.

Keys

Control enables mark/copy
If this is turned on, the control key needs to be pressed to enable mark/copy of text in a
window.

Control+K pops up color index
If this is turned on, a color index dialog will pop up when you press Control+K in an
editbox to insert a control code.

Control+Tab uses switchbar order
This changes the normal Control+Tab behaviour when switching windows so that it
follows the current window order on the switchbar.

Shift enables hotlinks
By default, when you move the mouse over an address/nickname/channel/etc. the
mouse turns into a hotlink pointer. By turning this option on, the hotlink will only appear
if you have the shift key pressed.

Shift enables right-click on titlebar
If turned on, you have to hold down the shift key when you click your right mouse button
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on a window titlebar to open/close the window.

Alt+Z closes active window
This allows you to close the currently active window with Alt+Z.

Escape minimizes window
To make a window minimize whenever you press the ESCape key, enable this option.

Right-click in listbox selects line
If turned on, this feature makes mIRC select the line under the mouse when you 
right-click in a listbox.

Tab changes editbox focus
This switches the focus to the next editbox or listbox in a channel window if it is pressed
in an empty editbox or if the cursor is not next to a word. If enabled, you need to use 
Shift-Tab instead of Tab to cycle between the list of nicks that messaged you.

Tab completion
Allows adding a suffix to the first tabbed and other tabbed words.

DDE
This allows you to change the DDE Server settings.

Enable SendMessage Server
This enables or disables support for receiving SendMessage messages.

Check for updates
If enabled, mIRC will check for and notify you of any new versions of mIRC.

7.7.1

Lock

The Lock dialog allows you to lock various features in mIRC.

Lock
This allows you to set a password which locks the options in the lock dialog.

Ask for Password
If this is turned on and you have set a password by using the Lock button, mIRC will ask
you for a password each time it is run.

Disable...
This allows you to disable features relating to Sending/Receiving files and the Fileserver.

You can also disable private messages and dcc chats, useful if you want to limit
conversations to public channels.

Hide tray menu...
This hides the list of channels/queries in the tray menu when mIRC is locked and
minimized to the tray.
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Hide tips...
This hides any currently visible Tips when mIRC is locked and minimized to the tray.

Limit channels...
This feature allows you to limit the channels that mIRC can join when on IRC. mIRC will
only be able to join the channels specified in this list.

Note: If you hold down the Control key when you minimize mIRC, it will ask you for
the password when you try to open the mIRC window later. If you use Control+Minimize
with no password set, mIRC will ask you for a temporary password.

8

Basic IRC Commands

IRC commands allow you to perform specific functions on IRC, such as maintaining
control of a channel and the users on it. The following list of basic IRC commands will
help you get started. There are also other mIRC Commands that you can look at later.

General Commands

/away [message]
Leaves a message indicating that you are currently not paying attention to IRC. When
someone sends you a message, they will automatically see your away message. Using
/AWAY with no message marks you as no longer being away and removes your previous
message.

example:  /away Off to get something to eat, back in a moment.

/invite nickname #channel
Invites a nickname to a channel that you are on.

/join #channel
Joins the specified channel.

example:  /join #irchelp

This will make you join the #irchelp channel. Once on a channel, anything you type will
be seen by all the users on this channel. The #irchelp channel is very useful, so say hello
and then ask any questions you want. If the channel you specified does not exist, a
channel with that name will be created for you.

Some channels may also have keys ie. a password, which you need to specify when using
the /join command. 

example:  /join #irchelp trout

This will make you join the #irchelp channel using "trout" as the password.

/list [#channel] [-MIN #] [-MAX #]
Lists currently available channels. You can also tell mIRC to show only channels with a
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minimum and a maximum number of people. If you specify a #channel then mIRC will
only list information for that channel. If you specify wildcards, eg. *mirc* then mIRC will
list all channels that contain the word mirc in them.

example: /list
example: /list -min 5 -max 20
example: /list #mirc
example: /list *mirc*

Note: mIRC also supports a /list -n switch that minimizes the list window when it is
opened.

/me message
Sends an action message to the current channel or query window. To send an action
message to a specific channel or nickname, see the /describe command.

/msg nickname message
Sends a private message to nickname without opening a query window.

Note: mIRC also supports /msg switches as described here.

/nick nickname
Changes your nickname to a new nickname.

/notice nickname message
Sends a private message to nickname without opening a query window for either you or
them.

/part #channel
Leaves a channel that you are on.

/privmsg nickname message
Sends a private message to nickname that will open a query window for the other user.

/query nickname message
Opens a query window to this nickname and sends them a private message.

Note: mIRC also supports /query switches as described here.

/quit [message]
Disconnects you from IRC and will give the optional message as the reason for your
departure. (this message only appears to people who are on the same channels as you).

/topic #channel newtopic
Changes the topic for a channel that you are on.

/whois nickname
Shows you information about a nickname.

Channel and User Commands
If you have Op status, the following commands give you control over both a channel and
the users on it.
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/kick #channel nickname
Kicks a nickname off a channel that you are on.

/mode #channel|nickname [[+|-]modechars [parameters]]
This is a powerful command that gives channel operators control of a channel and the
users on it.

Channel modes
------------------------

ModeChar Effects on channels
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
b <person> ban somebody, <person> in "nick!user@host" form
i channel is invite-only
l <number> channel is limited, <number> users allowed max
m channel is moderated, (only chanops can talk)
n external /MSGs to channel are not allowed
o <nickname> makes <nickname> a channel operator
p channel is private
s channel is secret
t topic limited, only chanops may change it
k <key> set secret key for a channel

User modes
-------------------

ModeChar Effects on nicknames
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
i makes you invisible to anybody that does

not know the exact spelling of your nickname
o IRC-operator status, can only be set

by IRC-ops with OPER
s receive server notices
v gives a user a voice on a moderated channel

Here a few examples of the MODE command:

To give someone op status:    /mode #channelname +o nickname

Giving someone op status means giving them control over the channel and the users on
it. Give this out sparingly and to people you trust.

To op several people:   /mode #channelname +ooo nick1 nick2 nick3

To de-op someone:    /mode #channelname -o nickname

To ban someone:  /mode #channelname +b nickname (or user address)

To unban someone:  /mode #channelname -b nickname (or user address)

To make a channel invite only:  /mode #channelname +i

You must now invite a user for them to be able to join your channel.
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9

mIRC Commands

The following commands are mostly unique to mIRC, though some are only modifications
or extensions of standard IRC commands.

/ajinvite [on | off]
Turns auto-join on invite on or off.

/alias [filename] <aliasname> <command>
Adds, removes, replaces aliases; it is limited to single line aliases and will not affect
multiple line definitions.

/alias /moo /me moos!

This will replace the first matching alias with the new command. To remove an existing
aliases:

/alias /moo

To add an alias to a specific alias file, you would use:

/alias moo.txt /moo /me moos!

If you do not specify a filename, it defaults to using the first filename in which the alias
exists, or if it does not exist then it uses the first loaded aliases file.

/amsg <message>
This and the /ame command send the specified message or action to all open channel
windows.

/anick <nickname>
Changes your alternate nickname.

/autojoin [-nsdN]
Can be used in the on CONNECT event or Perform section to delay or prevent autojoining
of channels

Where -n = join now, -s = skip autojoin, -dN = delay autojoin for N seconds.

Note: This also affects the rejoining of open channel windows during a reconnect.

/background [-abemsgdluhcfnrtpx] [window] [filename]
Changes the background picture setting for a window. This can also be changed via a
windows System Menu.

   -a = active window
   -m = main mIRC window
   -s = status window
   -d = single message window
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   -e = set as default

   -cfnrtp = center, fill, normal, stretch, tile, photo

   -l = toolbar
   -u = toolbar buttons
   -h = switchbar
   -b = treebar

You can right-click in the toolbar/switchbar to pop up a menu for changing these
settings. Toolbar buttons can use RGB Color 255,0,255 for transparency, the BMP must
be of the same form as that in mIRC resources. It should be a 16 or 256 color BMP.

   -x = no background picture

Note: The window name should only be specified if none of the window switches are
specified. The filename does not need to be specified if you are only changing the
display method.

/ban [-kruNbeIq] [#channel] <nickname|address> [type] [kick message]
Bans someone from the current channel using their address. To do this, it first does a
/userhost on the nickname to retrieve the address and then does a /mode # +b.

If you specify the -k switch, mIRC performs a ban/kick combination on the nickname,
with the optional kick message.

If you specify the -uN switch, mIRC pauses N seconds before removing the ban.

If you specify the -r switch, /ban removes the ban of the specified type for that
nickname, eg. /ban -r nick 2

If you do not specify a ban type, then mIRC uses the whole nick!*user@host to do the
ban. If you are banning an IP address then a wild card replaces the last number of the IP
address. If you are on the channel then the #channel specification is not necessary.

If you specify a wildcard address it is used as-is, if you specify a full address then the
type mask is applied to it.

For a list of ban types see the $mask identifier.

The -beIq switches apply the command to the ban/except/invite/quiet list. If none of
these switches are used, it applies only to the ban list.

Note: This command uses the IAL maintained by mIRC.

/beep <number> <delay>
Beeps a number of times with a delay.

/channel [#channel]
Pops up the channel central window for the channel window you are currently in. You can
also specify a #channel name to open the channel central for a channel you have already
joined but which is not the active window.
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/clear [-sghlc] [windowname]
Clears the buffer of the current window. If you specify a window name, that window's
buffer will be cleared.

The -s switch clears the status window.
The -l switch clears the side-listbox in a custom window.
The -c switch clears the click history in a picture window.
The -h switch clears the editbox command history for a window.

/clearall [-snqmtgua]
Clears the buffers of the specified windows, where s = status, n = channel, q = query, m
= message window, t = chat, u = custom, a = all windows on all connections.

If no switches are specified all windows are cleared.

/clipboard [-an] <text>
Copies the specified text to the clipboard. The -a switch makes it append the text to any
existing text in the clipboard. The -n switch appends a $crlf to the text.

/close [-axicdfgklmnstu@] [nick|window] ... [nick|window]
Closes windows of the specified type, matching the specified nicknames, where c = chat,
f = fserve, g = get, s = send, m = query, d = single message window, t = status
window, l = channels list, k = links list, n = notify list, u = urls list, @ = custom windows
and window id values.

The -a switch applies the command to all server connections.
The -x switch applies the command to the current server connection.

The -i switch closes only non-connected status windows or inactive chat/fserve/send/get
windows.

If no nick or window names are given, all windows of the specified type are closed.

You can specify the Nth window for -cfgs by appending a number, eg. /close -s4 nick,
would close the 4th open dcc send to nick.

You can also use a wildcard as the window name and all matching windows will be
closed.

/color [-lrs] <name> <index>
Allows you to change the color settings for items in the Colors dialog.

The -l switch reloads the color settings from the mirc.ini file.

The -r switch resets the Nth color (index 0 to 15) in the 16 color palette to its default
RGB value, with /color -r <N>. To change the color of the Nth color (index 0 to 15) in the
16 color palette to a new value, you can use /color <index> <rgb>

To change the color of a text item in the color dialog, you can specify the name of the
item, eg. Normal text, along with a new palette index.

The -s switch changes the active scheme, with /color -s <scheme name>
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Note: this command also supports color indexes 16 to 99 that are standard colors across
IRC clients.

/copy [-aofp] <filename> <filename>
Copies a file to another filename or directory. You can also use wildcards for the source
filename, and a directory name for the destination.

The -a switch appends the first file to the second one.
The -o switch overwrites a file if it exists.
The -f switch flushes the copy to disk immediately.
The -p switch preserves access/creation/modified timestamps.

/creq [+m|-m] [ask | auto | ignore]
This is the command line equivalent of setting the DCC Chat request radio buttons in the
dcc options dialog (see /sreq below). The +m|-m switch turns the minimize setting
on|off.

/ctcpreply <nick> <ctcp> [message]
Sends a reply to a ctcp query.

/ctcpreply goat HELP no help available.

/debug [-cinptrNoN] [N] [on | off | @window | filename] [identifier]
Outputs raw server messages, both incoming and outgoing, to a debug.log file, or a
custom @window.

/debug -n @moo, opens a custom @window minimized
/debug -c off, turns off debugging and closes the associated custom @window
/debug -pt, wraps or timestamps messages
/debug N @moo, uses color N for messages

The -i switch calls the specified identifier before a debug line is logged. The return value
of the identifier is used as the debug line.

The -rN and -oN switches set the incoming and outgoing line colors.

The $debug identifier returns the name of debug file or @window.

Note: /debug works independently for each server connection.

/describe <nick|channel> <message>
Sends an action to the specified nickname or channel.

/disconnect
Forces a disconnect from a server. This is different from the /quit command which sends
a quit message to the server and waits for the server to disconnect you.

/dll <name.dll> <procname> [data]
This allows you to call routines in a DLL designed to work with mIRC.

/dns [-46ch] [nick|address]
Resolves an address. If mIRC sees a "." in the name you specify it assumes it is an
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address and tries to resolve it. Otherwise it assumes it is a nickname and performs a
/userhost to find the user's address and then resolves it. If you specify an IP address, it
looks up the host name.

You can queue multiple /dns requests, and you can view the current queue by using /dns
with no parameters.

The -46 switches make /dns return results for IPv4, IPv6, or both types of addresses.

The -c switch clears all currently queued DNS requests, except for the one currently in
progress.

The -h switch forces /dns to treat the parameter as a hostname.

Note: /dns can also parse a nick!user@host format and extract the nick for lookup or the
host for resolution.

/donotdisturb [on|off]
Enables or disables the Do Not Disturb option.

This allows you to temporarily disable all visible/audible notifications such as sounds,
tips, flashing window icons, tray icon animations, and more.

The $donotdisturb identifier returns $true/$false depending on whether this feature is
enabled or disabled.

Note: This option can also be enabled or disabled via the Tools menu in the menubar.

/dqwindow [on|off|show|hide|min]
Manipulates the single message window.

/ebeeps [on | off]
Enables or disables the sounds in the Sounds dialog.

/echo [color] [-cdeghiNtsaqlbfnmr] [color name] [#channel|[=]nick] <text>
Prints text in the specified window using the specified color (0 to 15).

/echo 3 #mIRC Testing

would print "Testing" in the color green in channel window #mIRC, assuming it is already
open.

If a channel/nickname is not specified, the -s switch echoes to the status window, the -d
switch echoes to the single message window, and the -a switch echoes to the currently
active window.

The -e switch encloses the line in line separators.
The -iN switch indents the wrapped line by N characters.
The -h switch forces lines to hard-wrap so resizing the window does not change the line.
The -tN switch prefixes the line with a timestamp if global time stamping is on or
timestamping is on for that window. N is optional and is the UTC value to use for the
timestamp.
The -q switch makes it not display the text if called from an alias using the . prefix.
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The -l switch makes it apply the highlight settings to the line that is displayed.
The -bf switches make it apply the beep/flash settings in the window it is echoing to.
The -n switch prevents the echo from highlighting the window switchbar icon.
The -m switch indicates that the line should be treated as a user message.
The -g switch prevents the line from being logged to the log file.
The -r switch applies the strip settings in the messages dialog.
The -c switch uses the specified color name from the colors dialog.

Note: This text is only displayed in your own window, it is not sent to the server, no one
else can see it.

/editbox [-saf[N]nopbNeNvrqN] [window] <text>
Fills the editbox of the current window with the specified text.

The -s switch specifies the Status window.
The -a switch specifies the Active window.

To specify a dcc chat window, prefix the nickname with an = equal sign.

The -f[N] switch where N = 1 sets focus and N = 2 uses editbox with focus
The -p switch indicates that a space should be appended to text.
The -n switch fills the editbox and presses the enter key in the editbox.
The -o switch applies the command to the second editbox in a channel window.
The -bNeN switches set the start and end of the selection in the editbox.
The -v switch prevents the editbox contents from being changed.
The -r switch allows insertion of text that contains $cr and/or $lf characters.
The -qN switch enables/disables/toggles the second editbox.

/emailaddr <address>
Changes the email address in the Connect dialog.

/exit [-nr]
Close down mIRC and exit.

The -n switch disables the exit confirmation dialog.
The -r switch restarts mIRC.

/filter [-asdfhNkwxnpriocteubglLz] [n-n2] [c s] <infile | dialog id> <outfile |
dialog id | alias> [alias] <matchtext>
This command scans lines of text in a window or file and if any of them contain
matchtext, they are written out to another window or file which you can then use.

The infile can be a filename or a window name (custom or normal). The outfile can be a
filename or a custom window name. You should specify the -fw switches if the names
are ambiguous eg.

/filter -ff in.txt out.txt *mirc*

This indicates that both are filenames, and:

/filter -wf #in.txt #out.txt *help*

indicates that the first is actually a window name, and the second is a filename.
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The -a switch sorts filtered lines by calling the optional [alias]. The alias is passed two
lines in $1 and $2, it must compare these and return -1, 0, or 1 to indicate relative sort
order of these lines to each other.

The -x switch excludes matching lines.
The -n switch prefixes lines with a line number.
The -s switch makes the status window the infile.
The -d switch makes the single message window the infile.
The -p switch wraps the text output in a custom window.
The -hN switch indents wrapped text N characters when the -p switch is used.
The -r switch specifies the range of lines n to n2 for filtering.
The -b switch strips BURK codes when matching text.
The -g switch indicates that matchtext is a regular expression.
The -z switch retains line colors when filtering between custom windows.

The -k switch indicates that you have specified an <alias> as the output instead of a
window name. The alias will be called with the result of each filtered line.

The -i switch indicates that you have provided a [dialog id] custom dialog control as the
input.
The -o switch indicates that you have provided a [dialog id] custom dialog control as the
output.

The -c switch clears the output window/file before writing to it.

The -t switch sorts the output based on [c s], column C using character S as the columns
separator.

The -e specifies a descending sort, and -u a numeric sort.

The -l switch filters from the side-listbox in the first window, and -L filters to the
side-listbox in the second window.

You can filter blank lines by specifying $crlf for the matchtext.

This command also fills the $filtered identifier with the number of matches found, if
any.

Note: If the input and output are the same window/file, mIRC will process the request
correctly.

/findtext -n <text>
This searches active window for the specified text (same as Control+F).

/flash [-bNwNrNc] [window] <text>
This flashes the specified window/icon but only if mIRC is not the active application.

If you specify a text message, it will be displayed in the mIRC window titlebar.

The -bN switch makes mIRC beep N times.

The -wN switch makes mIRC play the Flash sound specified in the Event Beeps section N
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times.

The -rN switch makes mIRC repeat the flash N times.

The -c switch clears the flash status of all windows.

In all cases, if N is not specified the flash/sound continues indefinitely.

Note: As with the Highlight feature, if text contains identifiers or variables, they are
evaluated at every flash.

/flushini <filename>
Flushes the specified INI file to the hard disk. INI files are cached in memory, so you may
want to do this to make sure that your INI is updated properly.

/font [-asbidz|window] <fontsize> <fontname>
This allows you to change the font for the current window. If no parameters are specified,
the font dialog pops up, otherwise the specified parameters are used.

The -a switch applies the setting to the active window, -s to the status window.

The -b switch makes the font bold and the -i switch makes it italic.

The -d switch makes the font the default for that type of window, eg. for all channels, or
all chats.

The -z switch clears all font settings and sets all windows to the specified font. If no font
is specified, all windows are set to default font settings.

Note: If you use a negative number for the font size, it will match the size of fonts in the
font dialog.

/fullname <name>
Changes the full name in the connect dialog.

/help [keyword]
Brings up the section in the mIRC help file which matches the specified keyword.

/hop [-cn] [#channel] [message]
Parts the current channel and joins a new one. If no new channel is specified, it parts and
rejoins the current channel without closing the window.

The -c switch cycles the specified channel by parting and rejoining it.

The -n switch minimizes the channel window.

/join [-inxmd] <#channel>
This is a standard IRC command for joining a channel.

The -i switch makes you join the channel to which you were last invited.
The -n and -x switches set the minimize/maximize state for new channel windows.
The -m and -d switches set the mdi/desktop state for new channel windows.
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/linesep [-sa|window]
Prints the line separator, set in the Options dialog, in the specified window.

The -s switch prints to the status window.
The -a switch prints to the active window.

/links [-nx]
Retrieves the servers to which your current server is linked.

The -n and -x switches minimize/maximize the window when it opens.

/load <-aN|-pscqnm|-ruvsN> <filename>
Loads the specified alias, popup, or script.

/load -a aliases.ini loads an aliases file

If you specify N with /load -aN, this loads/reloads the file into the Nth position in the
aliases list.

/load -ps status.ini loads a status window popup
/load -pc status.ini loads a channel popup
/load -pq status.ini loads a query popup
/load -pn status.ini loads a nickname list popup
/load -pm status.ini loads a menubar popup

/load -ru users.ini loads a users file
/load -rv vars.ini loads a variables file
/load -rs script.ini loads a scripts file

If you try to load a file that is already loaded, its contents are updated and its position in
the alias/script processing order is maintained.

You can also use the /reload command with the same parameters to reload a file
without triggering the on start/load events in the script being loaded.

If you specify N with /load -rsN, this loads/reloads the file into the Nth position in the
scripts list.

Note: You can only load one section at a time.

/loadbuf [lines] [-apirslecNnomt<topic>] <window | dialog id> <filename>
Loads the specified number of lines from the end of filename into the specified window.

/loadbuf 20 @test info.txt

This loads the last 20 lines of info.txt into custom window @test.

/loadbuf 10-40 @test info.txt

This loads lines 10 to 40 of info.txt into custom window @test.

The -a switch loads the text into the active window.
The -p switch forces lines of text to wrap when added to the window.
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The -i switch makes sure that lines are indented if they wrap.
The -r switch clears the contents of the output window.
The -s switch applies the command to the status window.
The -l switch applies the command to the side-listbox in a custom window.
The -e switch evaluates variables and identifiers in the line being read.
The -cN switch specifies the default color for lines.

The -n switch logs the loaded text to a log file, if logging is enabled for that window. The
-m switch indicates that the text is already timestamped.

The -o switch indicates that you have specified [dialog id] parameters instead of a
window name in order to load text into a custom dialog control.

The -t switch loads the text under the [topic] section in an INI or plain text file.

/localinfo -uhp [host] [ip]
Looks up and sets your Local settings. The -u switch performs a /userhost lookup, the -h
switch performs a normal lookup, and the -p switch performs a UPnP lookup through
your router, if that is available. If you wish, you can also specify the hostname and IP
address values manually.

/log <on|off> <window> [-f filename]
Turns logging on and off for a window, if you specify a filename the logs file dialog is not
popped up.

/logview -nN <filename>
Displays a text file in mIRC using the same method as the Log Files dialog.

The -nN switch scrolls the opened file to the specified line.

/menubar <on|off>
Changes the menubar display state. The $menubar identifier can be used to determine
its state.

/mdi -act
Allows you to arrange icons, and cascade/tile windows.

/mkdir <dirname>
Creates the specified directory.

/mnick <nickname>
Changes your main nickname.

/msg [-snx] <nick> <message>
Sends a private message to nickname without opening a query window.

The -snx switches set the active/minimize/maximize state for a query window if it exists.

/nick <nickname>
Changes your nickname.

/noop
Performs no operation, parameters are evaluated as with a normal command.



mIRC Help56

 

/omsg [#channel] <message>
This and the /onotice command sends the specified message to all channel ops on a
channel. You must be a channel operator to use these commands. If the #channel is not
specified, then the current channel is used.

/partall [message]
Parts all of the channels you are currently on. On certain IRC Servers, you can also
specify a message.

/pdcc [on | off]
If turned on, tries to speed up dcc sends by sending packets ahead of acks.

/perform [on|off]
Enables or disables the Perform form section.

/play [-escpbnx q# m# f# rl# t#] [channel/nick/stop] <filename> [delay]
This plays a text file to a user or a channel.

/pop <delay> [#channel] <nickname>
Performs a delayed op on a nickname. The purpose of this command is to prevent a
channel window filling up with op mode changes whenever several users have the same
nickname in their auto-op section.

mIRC will pause around <delay> seconds before performing the op. If <delay> is zero, it
does an immediate op. Before performing the op it checks if the user is already opped. If
you do not specify the #channel, the current channel is assumed.

/pvoice <delay> [#channel] <nickname>
Works the same way as the /pop command except that voices a user.

/qmsg <message>
This and the /qme command send the specified message or action to all open query
windows.

/query [-snxmd] <nick> [message]
Opens a query window to the specified nickname. If a message is provided, it is sent.

The -snx switches set the active/minimize/maximize state for a new/existing query
window.
The -md switches set the mdi/desktop state for a new query window.

/queryrn <nick> <newnick>
Changes the nickname of an open query window.

/raw [-qn] <command>
Sends the specified command directly to the server. You must know the correct raw
format of the command you are sending.

/raw PRIVMSG nickname :Hello there!

The -q switch makes the command work quietly without printing what it is sending.
The -n switch prevents characters in the range 0-255 from being UTF-8 encoded, as long
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as the line contains characters only in the range 0-255. If there are characters outside
0-255, the whole line is UTF-8 encoded.

Note: This command does the same thing as /quote in other IRC clients.

/remini <inifile> <section> [item]
Deletes whole sections or single items in an INI file.

/remini my.ini DDE ServerStatus

This would delete the ServerStatus item, and:

/remini my.ini DDE

Would delete the DDE section.

See the /writeini command below for a related example.

Warning: Do not use this command to modify any of the INI files currently being used
by mIRC.

/remove [-b] <filename>
Deletes the specified file.

The -b switch deletes the file and moves it to the recycle bin.

/rename [-fo] <filename> <newfilename>
Renames a file, can also be used to move a file from one directory to another.

The -f switch flushes the rename to disk immediately.
The -o switch allows the overwrite of an existing file.

Note: This can also be used to rename directories.

/resetidle [seconds]
This resets the $idle identifier to zero or to the number of seconds you specify.

/rmdir <dirname>
Deletes the specified directory.

Note: If the directory contains files, it cannot be deleted.

/run [-ahnp] <filename> [parameters]
Runs the specified program with parameters.

The -a switch runs the file as an administrator.
The -h switch attempts to hide the window of the application being run.
The -n switch minimizes the window of the application being run.
The -p switch sets the working path to the path of the application being run.

You can enclose the filename or parameters in quotes if you need to. If you specify a 
non-executable file, mIRC tries to open it with the application associated with that file.
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/save <-pscqnm|-ruv> <filename>
Saves the specified popup or remote users/variables file.     

/save -ps status.ini saves the status popup to status.ini
/save -pn nick.ini saves the nickname list popup to nick.ini

/save -ru users.ini saves the user list to users.ini
/save -rv vars.ini saves the variables list to vars.ini

Note: You can only save one section at a time.

/savebuf [-saolpn] [lines] <window | dialog id> <filename>
Saves the specified number of lines from the end of the buffer of the specified window
into the specified filename.

/savebuf 20 @test info.txt

This saves the last 20 lines in custom window @test to info.txt.

/savebuf 10-40 @test info.txt

This saves lines 10 to 40 in custom window @test to info.txt.

The -s switch saves the status window buffer.

The -a switch makes it append the text to the end of a file instead of overwriting it.

The -o switch indicates that you have specified [dialog id] parameters instead of a
window name in order to save text from a custom dialog control.

The -l switch saves the contents of the side listbox, if there is one.

The -p switch strips control codes from saved lines.

The -n switch treats wrapped lines as a single line.

/saveini
Updates all mIRC-related INI files with the current settings.

/say <message>
This sends a message to the current channel or query window. So "/say Hello there"
would be the same as just typing "Hello there".

Note: You cannot use this command in the remote section. Use /msg #channel
<message> instead.

/server [-46demntpfoczu] <address/group> [port] [password] [-l method
password] [-keytype global/local] [-key filename]  [-itype global/local] [-i nick
anick email name] [-encoding N] [-jn #channel pass]
Connects you to a server, first disconnecting you from the current server.

/server irc.undernet.org 6667 mypassword
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If you type /server with no parameters, mIRC will connect to the last server you used. If
you use the server command while still connected, you will be disconnected with your
normal quit message and will then connect to the specified server.

You can also use /server N which connects to the Nth server in the server list in the
connect dialog.

You can also use /server group which will cycle through all the servers in the server list
which have that group name until it connects to one of them.

The -46 switches make /server connect to either IPv4, IPv6, or both types of addresses.

The -d switch allows setting the current status window's connection details without
connecting.

The -e switch initiates a secure connection to an SSL capable server. Alternatively you
can prefix the port number with a plus sign, eg. +7001.

The -m switch creates a new server window for that connection and connects to the
server. The -n switch does the same thing but does not connect to the server.

The -t switch initiates a secure connection to a STARTTLS capable server. Alternatively
you can prefix the port number with a star sign, eg. *7001.

The -pfoc switches prevent perform, popup favorites folder, autojoin channels, and the
on connect event when you connect to a server.

The -z switch minimizes the new server window.

The -u switch bypasses server requests for STS secure connections.

The -l switch specifies the login method, which can be: sasl, external, ecdsa, scram,
msg, or nickserv.

The -key switch specifies the private certificate filename for SSL connections.

The -i switch specifies the nick, alternative nick, email, and name to use for this
connection.

In addition, the switches -sar enable the following behaviour:

/server -sar [address] [-d description] [-p port] [-g group] [-w password] [-l
method password] [-keytype global/local] [-key filename] [-itype global/local]
[-i nick anick email name]

  -s sorts the servers list
  -a adds a server. If it exists, it is updated
  -r removes a server

mIRC tries to find a match for either the server address or the description in the
existing servers list.

/setlayer <N> [window]
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Sets the transparency of the main window to N, where N is between 0 and 255. If a
window name is specified, such as a channel or query window name, the transparency is
applied to that window.

/showmirc -mnrstxoplf
Manipulates the display of the main mIRC window, where -n = minimize, -r = restore, -s
= show, -t = tray, -x = maximize, -o = on top, -p = not on top, -m = minimize according
to tray settings, -f = full screen.

The -l switch can be used with the -nt switches to lock mIRC.

/sline [-a|r] <#channel> <N|nick>
Selects or de-selects lines in a channel nickname listbox. It can select either the Nth
nickname in a listbox, or a specified nickname.

If you do not specify any switches, any existing selections in the listbox are cleared. If
you specify the -a switch then the specified is selected without affecting the selection
states of other lines. If you specify the -r switch then the specified item is de-selected.

/speak <text>
Speaks the specified text, see the Speech section for more information.

/splay [-cwmpq] <filename>
Plays the specified sound, see the Playing Sounds section.

/sreq [+m|-m] [ask | auto | ignore]
This is the command line equivalent of setting the DCC Send request radio buttons in the
dcc options dialog (see /creq above). The +m|-m switch turns the minimize setting
on|off.

/strip [+-buriec]
Turns control code stripping options in Options dialog on/off.

/strip +bur-c

would turn bold, underline, reverse stripping on, and turn color stripping off.

/switchbar <on|off>
Changes the menubar display state. The $switchbar identifier can be used to determine
its state.

/timer[N/name] [-cdeomhipPrzN] [time] <repetitions> <interval>
<command>
Starts a timer that performs a command at the specified interval and for the specified
number of repetitions.

The N/Name parameter is an optional timer id. If not specified, the next available id is
assigned to the timer.

If you are not connected to a server and you start a timer, it defaults to being an offline
timer which means it will continue to run whether you are connected to a server or not.

If you are connected to a server and you start a timer, it defaults to being an online
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timer, which means that if you disconnect from the server, it will be turned off. You can
specify the -o switch to force it to be an offline timer.

/timer1 0 20 /ame is AWAY!

Timer1 will repeat an all channel action every 20 seconds until you stop the timer.

If you specify a delay of 0 seconds, the timer will trigger immediately after the calling
script ends.

/timer5 10 60 /msg #games For more info on the latest games do /msg GaMeBoT info

Timer5 will repeat this message to channel #games every sixty seconds and stop after
10 times.

/timer9 14:30 1 1 /say It is now 2:30pm

This will wait until 2:30pm and will then announce the time once and stop.

To see a list of active timers type /timers. To see the setting for timer1 type /timer1. To
deactivate timer1 type /timer1 off. To deactivate all timers type /timers off. If you are
activating a new timer you do not need to specify the timer number, just use:

/timer 10 20 /ame I am not here!

And mIRC will allocate the first free timer it finds to this command.

If you specify the -c switch, this makes mIRC "catch up" a timer by executing it more
than once during one interval if the real-time interval is not matching your requested
interval.

If you specify the -m or -h switch, this indicates that the interval delay is in milliseconds.

Note: The -h switch creates a high-resolution multimedia timer. This type of timer
should only be used in critical timer situations since it uses system resources heavily.

The -d switch ensures that a timer and any subsequent timers using the -d switch are
triggered in that order.

If you specify the -e switch, this executes the specified timer name. This also works if
you specify a wildcard name.

Instead of using a number you can also specify a name for a timer:

/timershow 0 10 echo -a $nick $server $time

The $ltimer identifier returns the timer id of the last timer that was started by the /timer
command.

You can force identifiers to be re-evaluated when used in a /timer command by using the
format $!me or $!time.

If you wish to turn off a range of timers, you can use a wildcard for the number, for
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example:

/timer3? off

Will turn off all timers from 30 to 39.

The -p switch pauses execution of the command. The timer continues counting down.
The -P switch pauses execution of the command and the countdown.
The -r switch resumes a paused timer.

The -i switch makes a timer dynamically associate with whatever happens to be the
active connection. If a server window is closed, the timer is associated with the next
available server window.

The -zN switch resets the Online Timer, where N = 0 resets current and total time, N = 1
resets current time, and N = 2 resets total time.

/timestamp [-fgs|a|e] [on|off|default] [windowname]
Turns timestamping of events on or off. If you specify default, uses the global
timestamp setting.

  -s = for status window
  -a = for active window
  -e = for every window

If a windowname is not specified, then the global timstamp switch is turned on or off.

The -f switch allows you to set the event timestamp format, eg. /timestamp -f [HH:nn]

The -g switch allows you to set the logging timestamp format.

/titlebar [@window] <text>
Sets the main application titlebar. If you specify a custom @window name, then the
titlebar for that custom window is changed.

/tnick <nickname>
Changes your nickname to a temporary nickname, without affecting your main or
alternate nicknames.

/tokenize <c> <text>
Fills the $1 $2 ... $N identifiers with tokens in <text> separated by character <c>, eg.:

/tokenize 44 a,b c,d,e

The above command would set $1 = a, $2 = b c, $3 = d, $4 = e

/toolbar <on|off>
Changes the toolbar display state. The $toolbar identifier can be used to determine its
state.

/treebar <on|off>
Changes the treebar display state. The $treebar identifier can be used to determine its
state.
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/unload <-a|-nrs> <filename>
Unloads the specified alias or remote script file.

/unload -a aliases.ini unloads the alias.ini file
/unload -rs script.ini unloads the script.ini file

The -n switch prevents a script from having the on unload event triggered.

Note: You can only unload one script at a time.

/updatenl
Usually the channel nicknames list and IAL in a kick/part/quit script event are updated
after the script finishes, this command updates them immediately.

/url [on | off | show | hide | -dranils] [[N | mark ] | address]
Show or hides the URL list window, and allows you to modify the current list of addresses
in it.

The -r switch deletes the Nth item, or all items that match the mark you specify.

The -an switches allow you to open a browser window to an address, where -a = activate
browser, and -n = use a new browser window.

The -ils switches allow you to insert an item, load, and save the list, respectively.

/winhelp <filename> [key]
Opens a help file with the specified search key.

/write [-cidnalNsNwNrNmN] <filename> [text]
Writes lines to a text file. For example:

/write store.txt This line will be appended to the end of file store.txt

The -c switch clears the file completely before writing to it, so it allows you to start with
a clean slate.

/write -c info.txt This file will be erased and have this line written to it

The -lN switch specifies the line number where the text is to be written.

/write -l5 info.txt This line will overwrite the 5th line in the file

The -i switch indicates that the text should be inserted at the specified line instead of
overwriting it. If you do not specify any text then a blank line is inserted. If you do not
specify a line number then a blank line is added to the end of the file.

/write -il5 info.txt This line will be inserted at the 5th line in the file

The -d switch deletes a line in the file. If you do not specify a line number then the last
line in the file is deleted.

/write -dl5 info.txt
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The above command will delete the 5th line in the file.

The -sN switch scans a file for the line beginning with the specified text and performs the
operation on that line.

/write -dstest info.txt

This will scan file info.txt for a line beginning with the word "test" and if found, deletes it.

If you do not specify any switches then the text is just added to the end of the file.

The -wN switch scans a file for the line containing the specified wildcard text and
performs the operation on that line. The -rN switch implies a regex match. The scan text
can be enclosed in quotes if it contains spaces.

The -mN switch changes how CRLFs are written to the end of a file, where N = 0 is the
default behaviour, N = 1 adds CRLF to end of file if it is not already there before writing a
line, and N = 2 never adds CRLF to end of file before writing a line.

The -a switch indicates that mIRC should append the line of text you specified to the
existing text of the specified line.

The -n switch prevents it from adding a $crlf to the end of the text.

Note: You cannot use this command to write to an INI file. If you do so, you will most
likely corrupt the INI file.

/writeini -nz <inifile> <section> <item> <value>
Writes to files in the standard INI file format.

If the -n switch is specified, it will attempt to write to the .ini file even if it is larger than
64k.

If the -z switch is specified, it write an empty value.

A part of the mirc.ini file looks like this:

[DDE]
ServerStatus=on
ServiceName=mirc

You could achieve this with /writeini by using:

/writeini my.ini DDE ServerStatus on
/writeini my.ini DDE ServiceName mirc

You can delete whole sections or items by using the /remini command.

Warning: Do not use this command to modify any of the INI files that mIRC is currently
using.
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10

mIRC Scripts

Scripts are short programs (sets of instructions) that can be used to automate tasks in
mIRC. mIRC has its own scripting language which can be used to perform many different
types of tasks, from managing your IRC channels to playing multi-user online games. 

mIRC scripts can also be used to perform tasks that are not IRC-related, such as
managing files on your computer, sending emails, or backing up your web server.

In order to write a script, you will need to learn the basics of the mIRC scripting language
by reading through the mIRC Scripts sections step by step, trying out the examples, and
experimenting.

To begin, you will need to know a handful of Basic IRC Commands and mIRC Commands.
Commands are the instructions that tell mIRC what to do. Once you are comfortable with
using commands, you can then take a look at the Aliases, Popups, and Remote sections.
In order to write scripts, you will also need to learn how to use Variables and Identifiers.

mIRC scripting also supports a whole range of technical features, from processing binary
files, calling COM objects, DLL support, creating Graphical windows, regular expressions,
creating sockets for network communications, and hash tables, among others.

If you need help, or are looking for scripting examples or tutorials, you can find quite a
few mIRC scripting websites on the internet, some of which are listed on the mIRC
website.

10.1

Aliases

mIRC allows you to create aliases and scripts to speed up your IRC session or to perform
repetitive functions more easily. To create aliases you must know some Basic IRC
commands.

Aliases can be called from the command line, from other aliases, and from popup
and remote scripts. An alias cannot call itself recursively mainly because this seems to
cause more problems for users than it solves.

Examples
The following examples show you how to create aliases that perform simple functions.

/gb /join #gb

If you now type /gb this is the same as typing /join #gb.

/j /join $1

http://www.mirc.com
http://www.mirc.com
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We have now added a parameter string. If we type /j #gb this is the same as typing
/join #gb. The $1 refers to the first parameter in the line that you supply.

/yell /me $2 $1

If you now type /yell There! Hello the action command will be /me Hello There! The
number after $ specifies the number of the parameter in the string that you entered.

/jj /join $?

The question mark indicates that you should be asked to fill in this parameter. The
parameter you supply will be inserted in the line at that point. So if you type /jj a dialog
will pop up asking you for the channel you want to join. If you enter #gb then the final
command will be /join #gb.

/jj /join #$1

the # sign indicates that the parameter you specify should be prefixed with a hash
indicating that it is a channel.

/jj /join $?="Enter channel to join:"

This does the same thing but now the dialog will have the "Enter channel to join:" line
displayed inside it.

/aw /away $?="Enter away message:" | /say $!

This is similar to the line above except for the addition of the $! parameter. This refers to
the text you just typed into the parameter box. ie. the away message. This saves you
having to type the same message twice.

/give /me gives $$1 a $$2

The double $$ means that this command will only be executed if a parameter is
specified. If you specify only one parameter in the above command it will not be
executed. You can also do $$?1 or $?1 which means try to fill this value with parameter
one if it exists. If parameter one  does notexist, ask for it. In the first case the parameter
is necessary for the command to be executed, in the second case it is not.

/slap /me slaps $1 around with $2-

The $2- indicates that everything following and including parameter 2 should be
appended to the command line. if you type /slap sheepy a large trout the final line
will be /me slaps sheepy around with a large trout.

You can also specify $2-5 which means use only parameters 2 to 5.

/laugh /me laughs at $1's joke

Anything appended to a $ parameter is appended to the final parameter. So if in the
above example we type /laugh goat the final command would be /me laughs at
goat's joke.
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/silly /say Hel $+ lo th $+ ere $+ !

Parameters are normally separated by a space. To make mIRC combine parameters you
can use the $+ identifier. The above line will say Hello there!.

/p /part #

The # sign refers to the channel you are currently on. So if you are on channel #blah,
and you type /p then mIRC replaces the # sign with #blah, and the final command is
/part #blah.

/op /mode # +o $1

To op someone you can now just type /op goat instead of the whole /mode command.

/dop /mode # -ooo $1 $2 $3

You can now deop three users by typing /dop goat dog cat.

For multiple commands you should use a | character (the shifted character usually
under the \ key). So to write an alias that kicks and bans someone:

/dkb /kick # $1 | /mode # +b $1

The [ ] evaluation brackets
If you want greater control over the order of evaluation of identifiers, you can use the [ ]
brackets. Identifiers within these brackets will be evaluated first, from left to right. You
can nest brackets.

/say % [ $+ [ $1 ] ]

You can also force a previously evaluated identifier to be re-evaluated by using extra [ ]
brackets.

/set %x %y
/set %y Hiya!
/echo [ [ %x ] ]

The { } brackets
You can create multi-line scripts by using the { } brackets. This allows you to create
an alias which performs several commands.

/poem {
  /msg $1 The Wendigo, the Wendigo,
  /msg $1 Its eyes are ice and indigo...
}

The If-then-else statement
You can use if-then-else statements to decide which parts of your script executes based
on the evaluation of a comparison.

/number {
  if ($1 == 1) echo One
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  elseif ($1 == 2) echo Two
  else echo Unknown number!
}

This creates an alias which tests if the parameter you supplied is the number 1 or the
number 2.

For more information, see the if-then-else section.

The Goto command
The /goto command allows you to jump from one point in a script to another point.

/number {
  if ($1 == 1) goto one
  elseif ($1 == 2) goto two
  else goto unknown
  :one
  echo One
  halt
  :two
  echo Two
  halt
  :unknown
  echo Unknown number!
  halt
}

Using a goto incorrectly could lead to an infinite loop. You can break out of a currently
running script by pressing Control+Break.

Note: I did not prefix the above commands with the / command prefix. This is because
the command prefix is really only needed when entering a command on the command
line. In scripts, all lines are assumed to start with a command, so you do not need to use
the / command prefix.

Error handling
Script errors can be caught by adding an :error goto point to your script. When an error
occurs, the script will jump to :error and continue running. $error returns the error
message.

You can reset the error with /reseterror. If you do not reset the error, it will propagate
backwards to any calling aliases until an :error is found and will halt the script as usual.

While Loops
Repeats a loop containing a set of commands while the expression in brackets is true.

var %i = 1
while (%i <= 10) {
  echo 2 %i
  inc %i
}

The expression in brackets uses the same format as an if-then-else statement.



69

 

Multiple while loops can be embedded. You can use /break to break out of the current
loop, and /continue to jump to the beginning of the loop.

The Return command
The /return command halts a currently executing script and allows the calling routine to
continue processing.

You can also optionally specify a return value which will be stored in the $result
identifier. The $result can then be used in the calling routine.

/return [value]

The Halt command
The /halt command halts a script and prevents any further processing. You can use this
in remote scripts to prevent mIRC from replying to normal ctcp messages, or in aliases to
halt an alias, and any calling aliases, completely.

Identifiers and Variables
An Identifier returns the value of a built-in mIRC variable. For example, $time would
return the current time. Whenever mIRC finds an identifier in your command, it replaces
it with the current value of that identifier.

For a list of identifiers, see the Identifiers section.

Variables are identifiers whose values you can create and change yourself and use later
in your scripts.

For more information on variables, see the Variables section.

Custom Identifiers
A custom identifier is just an alias which returns a value, and you can use that aliases
name with an identifier prefix.

For example, create an /add alias such as:

add {
  %x = $1 + $2
  return %x
}

And then use it in a command:

//echo Total is: $add(1,2)

You can supply as many parameters as you want, ie. $add(1,2,...,N).

You can also use the $prop identifier to refer to your own custom properties:

add {
  %x = $1 + $2
  if ($prop == negative) return $calc(-1 * %x)
  return %x
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}

//echo Total is: $add(1,2).negative

Note: Built-in identifiers of the same name have priority.

Remote Scripts
You can add aliases to remote scripts by using the alias prefix and then entering your
alias as usual.

alias add {
  %x = $1 + $2
  return %x
}

This is the same custom identifier as above, except it uses the alias prefix.

If you specify the -l switch in the alias definition, the alias becomes accessible only by
commands in the same script and invisible to the command line and other scripts.

alias -l add {
  %x = $1 + $2
  return %x
}

Function Key support
You can redefine function keys to perform certain commands, just like aliases. For
example:

/F1 /say Hello!
/sF2 /query $1
/cF3 /ctcp $1 version

The s and c prefixes for Shift key and Control key respectively.

Note: A function key will behave differently depending on the window in which it is
used. For example, when using it in a query window the $1 parameter refers to the
selected users nickname. If you are on a channel and the nickname listbox is active
then the function key will work on the selected nicknames. If the listbox is not active,
the function key will just work on the channel.

Command prefixes
If you are executing a command from the command line ie. by typing it into an editbox,
you can force mIRC to evaluate identifiers in that command by prefixing it with two //
instead of one /. For example:

/echo My nickname is $me

Would print out "My nickname is $me" and would not evaluate the $me.

//echo My nickname is $me

Would print out "My nickname is somenick" if your nickname was somenick.
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If you want to force a command to perform quietly ie. without printing out any
information, then you can prefix it with a "." full stop. For example:

/ignore somenick

Would print out information telling you that you are now ignoring "somenick". If you do
not want this information to be displayed, then you can use:

/.ignore somenick

If you want to perform a command without it being processed as an alias, you can prefix
it with a ! exclamation mark.

Comments
You can add comments to your scripts by using the ; semi-colon at the start of a line,
or /* and */ to enclose text.

;This is a comment

/*
This is a comment
*/

You can place comments anywhere in a script, they are ignored during processing.

The $& identifier
This identifier allows you to break up a single line into multiple lines which are combined
when the script is performed, so you can edit long commands more easily:

longline {
  echo This is an example of a long $&
  line that has been split into multiple lines $&
  to make it easier to edit
}

10.1.1

If-then-else statements

The If-then-else statement allows you to compare values and execute different parts
of a script based on that comparison.

Basic format

if (v1 operator v2) { commands }
elseif (v1 operator v2) { commands }
else { commands }

The ( ) brackets enclose comparisons, whereas the { } brackets enclose the
commands you want to be performed if a comparison is true. You must make sure that
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the number of ( ) and { } brackets match to make sure that the correct comparisons are
made, and that the correct commands are executed.

Using brackets speeds up processing. If an alias uses too few brackets then the
statement might be ambiguous and the alias will take longer to parse, might be parsed
incorrectly, or might not be parsed at all.

You can nest as many if-then-else statements as you want inside each other.

The Operators

== equal to
=== equal to (case-sensitive)
!= not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to
// v2 is a multiple of v1
\\ v2 is not a multiple of v1
& bitwise comparison

isin string v1 is in string v2
isincs string v1 is in string v2 (case sensitive)
iswm wildcard string v1 matches string v2
iswmcs wildcard string v1 matches string v2 (case sensitive)
isnum number v1 is a number in the range v2 which is in the form n1-n2 (v2

optional)
isletter letter v1 is a letter in the list of letters in v2 (v2 optional)
isalnum text contains only letters and numbers
isalphatext contains only letters
islowertext contains only lower case letters
isupper text contains only upper case letters

ison nickname v1 is on channel v2
isop nickname v1 is an op on channel v2
ishop nickname v1 is a halfop on channel v2
isvoice nickname v1 has a voice on channel v2
isreg nickname v1 is a normal nick on channel v2
ischan if v1 is a channel which you are on.
isban if v1 is a banned address in internal ban list on channel v2
isinviteif v1 is on the invite list of channel v2
isexcept if v1 is on the except list of channel v2

isaop if v1 is a user in your auto-op list for channel v2 (v2 optional)
isavoice if v1 is a user in your auto-voice list for channel v2 (v2 optional)
isignore if v1 is a user in your ignore list with the ignore switch v2 (v2

optional)
isprotect if v1 is a user in your protect list for channel v2 (v2 optional)
isnotify if v1 is a user in your notify list.

To negate an operator you can prefix it with an ! exclamation mark.
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$v1 & $v2
Returns the first and second parameters of an if-then-else comparison. So, in the case of
this comparison:

if (text isin sometext) { ... }

$v1 will return "text" and $v2 will return "sometext".

Combining comparisons
You can combine comparisons by using the && for AND and || for OR characters.

number {
  if (($1 > 0) && ($1 < 10)) {
    if ($1 < 5) echo Number is less than five
    else echo Number is greater than five
  }
  else echo Number is out of bounds
}

This alias checks if the number you specify, when you type /number <value>, lies within
the required range.

The ! not prefix
You can use the ! prefix in front of variables and identifiers in an if-then-else statement
to negate a value. The following statements are equivalent.

if (%x == $null) echo x has no value

if (!%x) echo x has no value

Examples

listops {
  echo 4 * Listing Ops on #
  set %i 1
  :next
  set %nick $nick(#,%i)
  if %nick == $null goto done
  if %nick isop # echo 3 %nick is an Op!
  inc %i
  goto next
  :done
  echo 4 * End of Ops list
}

This alias lists the Ops on the current channel. It does this the hard way since we could
just use $opnick() instead but using $nick() serves as an example of how isop can be
used and how $null is returned once we reach the end of the list.

GiveOps {
  %i = 0
  %nicks = ""
  :nextnick
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  inc %i
  if ($snick(#,%i) == $null) { if ($len(%nicks) > 0) mode # +oooo %nicks | halt }
  %nicks = %nicks $snick(#,%i)
  if (4 // %i) { mode # +oooo %nicks | %nicks = "" }
  goto nextnick
}

This is a popup definition which Ops the nicknames which are selected in the current
channel nicknames listbox.

on 1:ctcpreply:PING* {
  if ($2 == $null) halt
  else {
    %pt = $ctime - $2
    if (%pt < 0) set %pt 0
    if (%pt < 5) echo 4 [PING reply] $nick is too close for comfort
    elseif (%pt < 20) echo 4 [PING reply] $nick is at just about the right distance
    else echo 4 [PING reply] Earth to $nick earth to $nick
  }
  halt
}

This intercepts a ping reply and prints out a message based on how far away the person
is.

10.2

Popups

mIRC allows you to create custom popup menus for the status window, query/chat
windows, channel windows, the channel nickname listbox, and main menubar. To create
these you must know how to use Basic IRC commands, how to create Aliases, and how to
use Identifiers and Variables.

If you click the right mouse-button in a window, the popup menu for that window will
appear and you can select menu-items which you have defined to perform certain tasks,
such as opping a user or joining a channel.

Examples
Popup menu definitions use the format:

<menuitem>:<commands>

Get Help:/join #irchelp

The words before the ":" colon are the name of the menuitem. The words after the ":"
colon are the commands that are to be performed. In this case, the menuitem you would
see is "Get Help". The command that would be performed if you select this menuitem
would be "/join #irchelp", as if you had typed it.

The format of the commands follows precisely the same as those in normal aliases. See
the Aliases section to learn about aliases.
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To create a Submenu, use a "." full stop.

Join a Channel
.Get IRC help!:/join #irchelp
.Visit the folks at #friendly:/join #friendly
.Who shall we join?:/join $?

In this case, the name of the submenu is "Join a Channel". All the commands following it
beginning with a "." are part of this submenu.

To create menus within a submenu, you just add more full stops:

Channels
.Help
..irchelp:/join #irchelp
..mIRC:/join #mirc
..newbies:/join #newbies
.Other Channels
..Visit #friendly:/join #friendly
..Wibble Wobble:/join #wibble
.Join?:/join #$$?="Enter a channel name:"

To separate menuitems, you can use a single "-" dash on a line by itself.

whois ?:/whois $?
-
Misc
.Edit Temp:/run notepad.exe temp.txt
.say?: /say $?
.action?:/me $?
Names
.#irchelp: /names #irchelp
.#friendly: /names #friendly
.names ?:/names $?
-
channel list:/list
-
Join a Channel
.Get IRC help!:/join #irchelp
.Visit the folks at #friendly:/join #friendly
.Who shall we join?:/join $?

To use the popup menu for a channel nickname listbox, you need to select a nickname
before the menu will pop up. Here is a simple nickname listbox popup menu:

Who Is?:/whois $1
-
Modes
.Op:/mode # +o $1
.Deop:/mode # -o $1
.Kick, Ban:/kick # $1 | /ban $1
-
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DCC Send:/dcc send $1
DCC Chat:/dcc chat $1
-
Slap!:/me slaps $1 around a bit with a large trout
Query:/query $1 Hey you! hello? are you there...?

If you want to create a popup menu item which performs several commands, you can
use the { } brackets. See the Aliases section for more information on how to use these.

Cookie {
  if ($1 == $me) echo I give myself a cookie!
  else echo I give $1 a cookie!
}

The above menitem can be used in the channel nicknames listbox. The $1 refers to the
nickname of the user you have selected in the listbox. In this case, it checks to see if I
have selected my own nickname, and if so displays the first message, otherwise it
displays the second message.

The popup menus for the Query/Chat and the MenuBar work the same way as the
channel listbox popup menu.

Identifiers and Variables
Variables or identifiers that are a part of a the title of a menu definition are evaluated
each time the popup appears. This allows you to create popup menus that vary in
appearance. If an entire menu item evaluates to $null, it is not displayed.

Remote Scripts
You can place menu definitions in your remote scripts by using the menu prefix.

menu status {
  Server
  .Links:/links
  .Lusers:/lusers
  .Motd:/motd
  .Time:/time
}

This definition would add a submenu to your status window popup menu.

You can also specify channel, query, nicklist, and menubar as the menu name, and this
will add menuitems to your current popup menus for each of these windows.

menu nicklist {
  Slap
  .Haddock:/me prods $1 with a haddock
}

This definition would add a submenu to your channel nickname listbox popup menu.

You can also specify popup menus for custom windows by specifying the custom window
name.
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menu @test {
  dclick:/echo double-click!
}

The dclick item allows you to specify a command that will be performed when you
double-click in a custom window listbox. You can also refer to $1 which holds the line
number of the line that was double-clicked.

You can also specify multiple window names for a menu, eg.:

menu @dogs,@cats,@goats {
   dclick: /echo double-click in $active
   close: window -c $active
}

You can use the $menu, $menutype, and $menucontext identifiers to refer to the
menu that is about to pop up or that is associated with the script being performed. This
allows you to modify the form of the popup based on whether it is a query, channel, etc.
popup menu:

menu query,nicklist {
   $iif($menu == nicklist,Op):/mode # +o $$1
}

Menu Styles
You can place a check mark or create a disabled menu item by using the $style(N)
identifier, where N = 1 for checked, N = 2 for disabled, and N = 3 for both. The $style(N)
identifier must be the first word in the menu definition.

menu status {
  $iif($server == $null,$style(2)) Server Info
  .Motd:/motd
  .Time:/time
}

The above definition creates a submenu in your status window popup which is only
enabled when you are connected to an IRC server.

$submenu($id($1))
This identifier allows you to dynamically create a list of menu items, and can only be
called from a popup menu definition.

It calls $id($1), where $id() is the name of your identifer, and where $1 = 1, and
increases by 1 with each call, adding whatever is returned by $id() to the popup menu.

The value that $id() returns must be a one line definition format for a popup menu.

The iteration ends when $id() returns no value.

menu status {
  Animal
  .$submenu($animal($1))
}
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alias animal {
  if ($1 == begin) return -
  if ($1 == 1) return Cow:echo Cow
  if ($1 == 2) return Llama:echo Llama
  if ($1 == 3) return Emu:echo Emu
  if ($1 == end) return -
}

The begin and end values are sent to check if the item should be enclosed in separators.

Note: You cannot use this to create nested submenus, it will only build one single
submenu.

10.3

Remote

The remote allows you to create scripts that react to IRC Server events, such as when a
user joins a channel or sends you a message. This tool is the most complex part of mIRC
and to use it you must already know how to use Basic IRC Commands, how to create
Aliases, and how to use Variables and Identifiers.

The remote consists of three distinct sections:

The Users section, where user addresses with assigned access levels are listed. Each
User in your Users section can be assigned one or more levels. These access levels
dictate which events a user will be able to access.

The Variables section, where the currently active variables are listed.

The Scripts section, where the scripts that you create are listed. You can load multiple
scripts which work independently of each other. This means that a single IRC Server
event can trigger events in one or more scripts. Scripts consist of events which can
only be triggered by users who have the required access levels. You can also place
Aliases in your scripts by using the alias prefix, and menus in your scripts by using the
menu prefix.

Since Access Levels play an important part in the way scripts work, you should read
about them carefully before proceeding. You should also take a look at remote 
Commands, Identifiers, and the Internal Address List, and the section on how to Halt
default text being displayed if you want to display your own custom messages for events.

All of the following Events use the same general format except for the ctcp and raw
events. The sections below provide you with information on each event as well as
examples and tips on how to use them.

Action
Active
Agent
AppActive
Ban

Error
Exit
FileRcvd
FileSent
GetFail

Mode
Mp3End
Nick
NoSound
Notice

Serv
ServerMode
ServerOp
Signal
Snotice
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Chat
Close
Connect
Ctcp
CtcpReply
DccServer
DeHelp
DeOp
DeVoice
Dialog
Dns

Help
Hotlink
Input
Invite
Join
KeyDown
KeyUp
Kick
Load
Logon
MidiEnd

Notify
Op
Open
Part
Ping
Pong
PlayEnd
Quit
Raw
RawMode
SendFail

Start
Tabcomp
Text
Topic
UnBan
Unload
Unotify
UserMode
Voice
Wallops
WaveEnd

Here is an example script that shows you how you can place aliases, popups, and events
in a single file making it easier to distribute your scripts to other people.

Note: You should never load or use a script that you do not understand.

10.3.1

Remote Commands

The following commands are used to modify settings in scripts and in the remote section.

General Commands

/ctcps [on|off]
This switches processing of ctcp events on/off.

/events [on|off]
This switches processing of named events on/off.

/dlevel <level>
This changes the default user level to the specified level.

/raw [on|off]
This switches processing of numeric events on/off.

/remote [on|off]
This switches processing of all scripts on/off.

Group Commands
These commands allow to turn groups on and off in remote scripts. You can find out
about groups in the Access Levels section.

/enable <group1 group2 ... groupN>
This enables the specified groups in all scripts.

/enable #one #two #three

You can also specify a wildcard to enable all matching groups:

/enable #help*
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/disable <group1 group2 ... groupN>
This disables the specified groups in all scripts.

/disable #one #two #three

You can also specify a wildcard to disable all matching groups:

/disable #help*

/groups [-e|d]
This displays a list of either all, enabled, or disabled groups in your scripts.

User and Level Commands
You can use the following three commands to add and remove users to the users list, as
well as to add and remove levels from existing users.

/auser [-a] <levels> <nick|address> [info]
This adds the specified nick/address exactly as it is given to the users list with the
specified levels. If you specify [-a], then if the user already exists, the specified levels
are added to the current levels the user has. Remember, if the first level is not preceded
by an equal sign then it is a general access level.

/auser 1,2,3 Nick

This adds this nick with these access levels to the user list (replacing an existing user of
the same name).

/auser -a 1,2,3 Nick

This adds the specified levels to this user. If the user does not exist, it is created.

/auser -a =1,2,3 Nick

This looks like the above command, however the =1 is very important. The =1 means
that the initial general access level is not replaced. If you had used 1 then the initial
access level would be replaced.

The info parameter allows you to append text to the entry that is added to the users list,
you can reference this later with the $ulist() identifier.

/flush [-l] [levels]
This clears the remote user list of nickname definitions that are no longer valid.

/flush 1,2,3

For each nick in the remote user list that matches the specified levels mIRC checks to see
if that nick is on any of the channels that you are currently on. If not, the nick definition
is removed from the remote user list. If you do not specify levels then mIRC clears all
nicks from the remote user list that do not exist on channels you are on.

You can use the -l switch to remove only the specified levels from entries in the user list,
instead of removing the entries.
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/guser [-a] <levels> <nick> [type] [info]
This works the same as the /auser command except that it looks up address of the
specified nick and adds it to the user list. It does this by doing a /userhost on the given
nickname, and returning an address in the format specified by type. If no type is
specified then a default address format is selected.

The info parameter allows you to append text to the entry that is added to the users list,
you can reference this later with the $ulist() identifier.

/iuser <nick | address> [info]
This allows you to set or remove the info appended to a user list entry.

/ruser [levels] <nick | address> [type]
If used without specifying levels, this removes the specified user from the user list. If you
specify levels then these levels are removed from the current access levels of this user. If
all a user's levels have been removed, the user is removed. If you specify a type then the
users address is looked up with a /userhost and any users in the users list matching this
address are removed.

/ruser Nick
/ruser 1,2,3 Nick
/ruser 1,2,3 Nick 1

If you use /ruser Nick! (with an exclamation mark at the end), it removes all users with
an address beginning with Nick!.

/rlevel [-r] <levels>
This removes all users from the remote users list with the specified general access level.

/rlevel 20
/rlevel =10

If the -r option is specified, then this applies to all the access levels for a user (not just
the first general access level). Any matching levels are removed. If a user has no more
levels left then the user is also removed.

/rlevel -r 1,5,7,8

/ulist [<|>] <level>
This lists users which have the specified access levels.

/ulist <10    lists users with access levels less than or equal to 10
/ulist >5      lists users with access levels greater than or equal to 5
/ulist 4        lists users with access level 4

Note: The /guser and /ruser commands do a /userhost on a nick to find the nick's
address, thus they are delayed commands since they need to wait for a reply from the
server. mIRC tries to get around this delay by maintaining its own Internal Address List
which will speed things up in certain situations.
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10.3.2

Remote Identifiers

You can use the following identifiers in scripts to refer to values relating specifically to
events. There are also quite a few other identifiers which relate only to specific events,
these are described with the events themselves in other parts of the help file. There are
also other identifiers which can be used in both remote and non-remote scripts.

$1-
You can use the $1 $2 ... $N identifiers to refer to individual parameters in a line. You
can also use $N- to refer to parameters N and onwards, and $N-M to refer to parameters
$N through to $M. So to refer to a whole line, you would use $1-.

$0
Returns the number of space-delimited tokens in the $1- line.

$(...)
This identifier can only be used in the text match section of an event definition. It
allows you to create a match parameter dynamically. You can use $1- to reference the
incoming line.

on 1:TEXT:$(*hello $me $+ *):?:echo hello back!

$address
Returns the address of the user associated with an event in the form user@host.

$chan
Returns the name of the channel for a specific event. For all non-channel events $chan
will be $null.

$clevel
Returns the matching event level for a triggered event.

$dlevel
Returns the current default user level.

$event
Returns the name of the event that was triggered.

$eventid
Returns a unique value to identify the event that can be used, for example, in 
SendMessage().

$fulladdress
Returns the full address of the user triggering an event in the form nick!user@host.

$group(N/#)
Returns the name or status of a #group in a script.

Properties: status, name, fname
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$group(0) returns the number of groups
$group(1) returns the name of the first group
$group(1).status returns on or off for the first group
$group(#test)returns on or off for group #test
$group(#test).fnamereturns the script filename in which the group exists
$group(3).name returns the name of the 3rd group

$maddress
Returns the address that was matched for the triggered event.

$matchkey
Returns wildcard matchtext that was used in the matching remote event.

$mode(N)
Returns the Nth nick affected by a channel mode change.

Properties: op, deop, ban, unban, voice, devoice, help, dehelp

The properties can be used to specify which type of mode change you want to check.

$mode(0).op returns the number of opped nicks
$mode(1).op returns the first opped nick

Note: This identifier is only used in conjunction with the on OP/DEOP etc. events.

$nick
Returns the nickname of the user associated with an event.

$numeric
Returns the numeric for the matching numeric event.

$rawbytes
Returns raw server line for server events prior to any parsing/decoding

$rawmsg
Returns raw server line for server events.

$remote
Returns a bitwise integer indicating if ctcps/events/raws are enabled.

if ($remote & 1) echo ctcps are enabled
if ($remote & 2) echo events are enabled
if ($remote & 4) echo raws are enabled

$script
Returns the filename of the currently executing remote script.

$script(N/filename)
Returns the filename for the Nth loaded script file. If you specify a filename, it returns
$null if the file is not loaded.

$script(0) return the number of script files loaded
$script(2) returns the filename of the 2nd loaded script file
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$script(moo.txt) returns $null if the file is not loaded, or moo.txt if it is.

Note: This cannot be used to reference the users or variables files.

$scriptdir
Returns the directory of the currently executing remote script.

$scriptline
Returns line number in current script.

$site
Returns the portion of $address after the @ for the user associated with an event in the
form user@host.

$target
Returns the target of an event.

$ulevel
Returns the user level that was matched for the currently triggered event.

$ulist(nick!userid@address,L,N)
Returns the Nth address in the Users list that matches the specified address and level.

Properties: info

You can specify a wildcard address or a * to match any address in the user list. If you do
not specify a full address, it completes the address with wildcards. If you do not specify
N, the first matching address is returned.

If you specify L, only matching addresses that contain the specified level are returned.

Note: L and N are optional, but if you specify L, you must specify N.

$wildsite
Returns the address of the user who triggered an event in the form *!*@host.

10.3.3

Access Levels

Access levels are assigned both to a user and to an event and serve to limit a user's
access to only certain events.

The default access level is 1 for users that are not listed in the Users list. All users can
access level 1 events. The higher a user's access level is, the more events that user can
access. You can change the default user level to allow unlisted users to access more
commands.

User List
In the Users section you can specify a list of users and their access levels using the
format:
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<level1,level2,...,levelN>:<useraddress>

3,5,6:nick!user@mirc.com

The first level is a general access level, which means that the user can access all levels
equal to or less than 3. All the other levels are levels that an event must specifically
have to allow a user to access it.

If you want to force the first access level to be a specific level instead of a general
access level, you can prefix it with an equal sign.

=3,5,6:nick!user@mirc.com

Now this user has access specifically to level 3, 5, and 6 event and to no other events.

Event Format
In general the format of an event is:

<prefix> <level>:<event>:<window>:<commands>

ctcp 1:HELP:*:/msg $nick No help is available for level 1 users

The above ctcp command can be accessed by all users because it is a level 1 command.
So if a user with nickname goat sends you a /ctcp yournick HELP, your script will send
them the above reply.

Only the highest level matching event is triggered for a user.

Named Levels
You can also used named levels which work the same way as a specific level but are
easier to understand and read than a number.

friend:nick!user@mirc.com

on @friend:JOIN:#mIRC:/mode $chan +o $nick

This treats the word friend as a specific access level and matches the user with the
event, and because the user is your friend, you give him ops.

Event Prefixes
You can limit access to an event by specifying a special prefix which determines how an
event is processed or triggered by users.

The me prefix
You can limit an event to trigger only to your actions by using the me prefix. For
example, the following event will only trigger when you join a channel:

on me:*:JOIN:#:/msg # Hello to one and all!

The ^ prefix
You can prevent the default text for an event from being shown by using the ^ prefix in
an event definition. See Halting Text for details.
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The + prefix
You can limit an event to users with a specific access level by using the + prefix.

10:nick!user@mirc.com

ctcp +5:HELP:*:/msg $nick You have accessed a level +5 event

The above user cannot access this ctcp event even though he has an access level higher
than 5 because the event is limited only to level 5 users.

The * prefix
You can allow any user to trigger an event regardless of their access level by using the *
prefix.

on *:TEXT:help:#:/msg $nick you have accessed a * level event

The ! prefix
You can prevent an event from being triggered if it was initiated by you by using the !
prefix.

ctcp !2:HELP:*:/msg $nick You have accessed a level 2 event

You would be unable to access the above event regardless of your access level.

The @ prefix
You can limit events to being executed only when you have Ops on a channel by using
the @ prefix.

10:nick!user@mirc.com

on @2:JOIN:#mIRC:/mode $chan +o $nick

When the above user joins channel #mIRC and you have Ops on #mIRC, the associated
/mode command will be executed, in this case giving the user Ops. If you do not have
Ops, the event will not trigger.

The & prefix
You can prevent an event from being triggered if a previous script used /halt or
/haltdef to halt the display of default text for an event by using the & prefix.

on &1:TEXT:*:?:/echo this event will not trigger if $halted is true

The $ prefix
Indicates that the matchtext section of a definition contains a regular expression.

on $*:TEXT:m/regular expression/switches:#:/echo message: $1-

The m and the switches are optional. The // are required. If switches are used they
must be standard PCRE switches, otherwise the match will fail. You can use switch S to
strip control codes from $1-.

The = suffix
You can prevent users with higher access levels from accessing all lower access level
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events by using the = suffix.

10:nick!user@mirc.com

ctcp 2:HELP:*:/msg $nick You have accessed a level 2 event
ctcp 5:HELP:*:=

The above user cannot access any of these events because the level 5 event prevents
him from accessing all HELP events with access levels lower than 5.

The ! suffix
You can prevent commands for a certain event level from being processed by using the !
suffix.

ctcp 5:PING:*:echo PING!
ctcp 5:*:*:!

The ! at the end of the line tells the remote to halt any further processing of level 5
commands.

Groups
You can create separate groups in scripts by using the # hash prefix.

#group1 on
...
[ list of events ]
...
#group1 end

You can use the /enable and /disable commands to enable or disable groups. A group
that is disabled will be ignored when processing events. A disabled group looks like this:

#group1 off
...
[ list of events ]
...
#group1 end

You cannot have groups within groups.

Order of definitions
Many of the prefixes and controls are sensitive to numerical order of the definitions. The
safest thing is to order your definitions starting with the lowest access levels first and
increasing numerically down the list, this makes it easier to keep track of which events
should trigger first.

10.3.4

Ctcp Events

CTCP stands for Client-To-Client-Protocol which is a special type of communication
between IRC Clients. By creating CTCP events, you can make your mIRC react to
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commands or requests from other users. CTCP events use the format:

ctcp <level>:<matchtext>:<*|#|?>:<commands>

The level is the access level required to access this event, the matchtext is the actual
CTCP being sent, the *#? specify whether to react to any message, to channel
messages, or to private messages respectively, and the commands are the commands
that will be performed if this event triggers successfully.

Examples
The following examples should give you an idea of how to create simple CTCP events.

A Basic CTCP event

ctcp 1:help:*:/msg $nick help yourself!

The above ctcp event would react to a /ctcp yournick help message either in a channel
or private message. Since it has access level 1, this means that any user can access it
because 1 is the lowest access level.

Giving Op status to a friend

=5:*!user@mirc.com

ctcp 5:opme:?:/mode $2 +o $nick
ctcp 5:inviteme:?:/invite $nick $2

These definitions would allow the above level 5 user to send you the ctcp /ctcp
yournick opme #mIRC and if you are on an Op on channel #mIRC, the above script
would automatically Op him. The user can also send you the ctcp /ctcp yournick
inviteme #mIRC, and you would invite him to channel #mIRC.

Note: By giving the user access level =5, the user is limited only to level 5 events. If I
had given the user access level 5, then the user would be able to access all events which
have access level 5 and below.

Changing a standard CTCP reply

ctcp 1:ping:?:/notice $nick Ouch! | /halt

This will react to the standard ping CTCP and will reply with "Ouch!". The /halt at the end
of the line prevents the standard ping reply from being sent. If you do not use the /halt,
the standard reply to PING will be sent.

ctcp 1:time:?:/notice $nick The time here is around $time | /halt

This will react to the standard time CTCP and will reply with the above message. Again,
the /halt prevents the standard time reply from being sent.

Note: You cannot prevent the standard version reply from being sent.

Controlling your mIRC remotely
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100:*!user@mirc.com

ctcp 100:quit:?:/notice $nick Okay boss, I am quitting... see you later! | /quit

The above definition shows how you can give yourself a high access level to access the
quit event, and you can tell your mIRC to quit IRC from another IRC Client.

ctcp 100:send:?:/dcc send $nick $1-

This definition allows you to ask your mIRC to send you whatever file you specify to the
IRC Client you are using from another location, for example by using the ctcp /ctcp
yournick send homework.txt.

ctcp 100:*:?:$1-

This event definition allows you to execute any command remotely. So if you send a 
/ctcp yournick echo Hi!, your script will execute the command echo Hi!. This is a
potentially dangerous event definition since if you allow anyone else to access it, they
will be able to perform any command they want on your computer.

Wildcards and Variables

ctcp 1:*help*:#:/notice $nick I can see that you need some help

By using the * and ? wildcard characters, you can match any incoming text. So if a
user sends you a ctcp which has the word help in it anywhere, the above notice will be
sent.

ctcp 1:%password:?:/notice $nick Your access has been authorized

By using Variables in the matchtext section, you can change the value of %password
whenever you want without having to change the event definition. So if you set
%password to the value "moo" and someone sends you a "moo" ctcp, it will match
%variable and the notice will the above message will be sent.

10.3.5

Raw Events

The raw event allows you to process numeric server messages that are identified only by
a number, and non-numeric server messages which mIRC does not recognize internally.

There are a large number of raw events, far too many to go into here, so it is
recommended that you check out the mIRC website for technical information. The
document you are looking for is called RFC1459. There is also a numerics help file
available which is more up-to-date than this document.

Filtering and handling raw messages can be very time-consuming because of the
large number of messages that a server can send, so you should try to make sure that
your scripts process this information as quickly as possible. The format of the raw event
definition is:

http://www.mirc.com
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raw <numeric>:<matchtext>:<commands>

Examples

The following script filters out the channels list numeric when you use the /list
command.

raw 322:*mirc*:/echo 5 raw $numeric : $1-

The above script matches numeric 322 which is the channels /list numeric and if the line
returned by this numeric has the word mirc in it, it is printed out in the status window.

You can process non-numeric server messages by specifying the name of the event:

raw PROP:*mirc*:/echo 5 raw $event : $1-

Note: You can prevent most raw server messages from printing out their default text by
using the /halt command.

10.3.6

Other Events

As well as the Ctcp and Raw events, mIRC supports a range of other events that can be
triggered in various situations, such as when a user joins a channel or sends you a
message. The following list of items describes all of the events that mIRC supports.

10.3.6.1

on ACTIVE/APPACTIVE

The on ACTIVE and on APPACTIVE events trigger when a window in mIRC is activated
or when its active status changes.

Format: on <level>:ACTIVE:<*#?=!@>:<commands>
Example: on 1:ACTIVE:#mirc:/echo Channel window #mIRC has been activated

Examples

on 1:ACTIVE:*:echo Activated: $active De-Activated: $lactive

The above event triggers whenever a window in mIRC is activated. The $active identifier
returns the name of the currently active window, and the $lactive identifier returns the
name of the window that was just de-activated. You can also use the $activecid and
$lactivecid, see the Multi-Server section for more information.

Note: It is possible for either or both $active and $lactive to return $null.

on 1:APPACTIVE:echo mIRC active status: $appactive

The above event triggers when the active status has changed. The $appactive identifier
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returns $true if mIRC is active, or $false if it is not.

10.3.6.2

on AGENT

The on AGENT event triggers when an Agent has finished speaking.

Format: on <level>:AGENT:<commands>
Example: on 1:AGENT:/echo Agent $agentname has finished speaking

Examples

on 1:AGENT:/echo Agent $agentname has finished speaking

The above event triggers when an Agent has finished speaking. The $agentname
identifier returns the name of the agent associated with the event.

10.3.6.3

on BAN/UNBAN

The on BAN and on UNBAN events trigger when a user on a channel is banned or
unbanned.

Format: on <level>:BAN:<#[,#]>:<commands>
Example: on 1:BAN:#mirc,#irchelp:/msg $nick Sorry but you are not allowed on
$chan

Examples

on 9:BAN:#newbies:/mode $chan -o $nick | /mode $chan -b $banmask

This triggers when someone bans a user with access level 9. The nick who did the
banning is de-opped and the banmask is set again. $banmask refers to the banmask
used to ban the user.

on 1:UNBAN:#:/msg $bnick You have just been unbanned

This triggers when any user is unbanned from any channel. $bnick refers to the banned
users nickname, however this would actually only be filled if the banmask itself includes
a nickname. If the banmask does not include a nickname, $bnick is $null.

Remember that $banmask is usually a wildcard string which means that it will match
both wildcard and non-wildcard user strings in your remote users section.

Comparing levels

You can compare the levels of the banner and the banned by prefixing the line with
<,>,<=,=>,<>, or =, in the following way:
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on >=2:BAN:#mIRC:/msg $chan $nick banned $banmask (legal)
on 1:BAN:#mIRC:/msg $chan $nick banned $banmask (illegal)

In this situation, if the banners level is greater than or equal to the banned users level,
then it is a legal ban. Otherwise, it defaults to the second ON BAN line which indicates
that it is an illegal ban. Remember, this is comparing the banners and banned users
levels and has nothing to do with the level 2 in the definition.

Note: These events only work on nicknames because the IRC server only sends the
nickname of the user being banned/unbanned and not an address. Also, IP addresses will
not be matched against named addresses, and banmasks ending in @* will be ignored
since this can match almost any user address.

10.3.6.4

on CHAT/SERV

The on CHAT and on SERV events trigger when a message is sent to a dcc chat or dcc
fserve window.

Format: on <level>:CHAT:<matchtext>:<commands>
Example: on 1:CHAT:*help*:/msg $nick what is the problem?

For an explanation of matchtext see the on TEXT event.

Examples

on 1:CHAT:boo!:/msg =$nick Boo back at ya!

This triggers when someone in a dcc chat window says boo! The equal sign in =$nick is
required to send the reply as a dcc chat message. If no equal sign is used, the message
is sent as a private irc server message.

on 1:SERV:bye:/msg =$nick Thanks for using my fileserver, bye!

This triggers when a user in a dcc fileserver session says the word bye to quit the
fileserver. You can also refer to the $cd identifier to reference the current directory a
fileserve is in.

Note: These events react to all users level 1 and above because of the way dcc chat
works.

10.3.6.5

on CONNECT

The on CONNECT event triggers when mIRC connects to an IRC Server right after the
MOTD is displayed.

Format: on <level>:CONNECT:<commands>
Example: on 1:CONNECT:/join #new2irc
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The on DISCONNECT event uses the same format as above and triggers when you quit
or are disconnected from an IRC Server.

The on CONNECTFAIL event uses the same as above and triggers when a connection
attempt (including all retries) has failed. $1- is set to the connect error message.

Examples

on 1:CONNECT:/echo Connected to $server at $time with nickname $nick

This triggers after mIRC connects to a server.

on 1:DISCONNECT:/echo Disconnected from $server at $time with nickname $nick

This triggers when mIRC is disconnected from a server.

10.3.6.6

on CTCPREPLY

The on CTCPREPLY event triggers when a user sends a standard ctcp reply to a ctcp
that you initiated.

Format: on <level>:CTCPREPLY:<matchtext>:<commands>
Example: on 1:CTCPREPLY:VERSION*:/echo $nick is using IRC client: $1-

For an explanation of matchtext see the on TEXT event.

Examples

on 1:CTCPREPLY:PING*:/echo $nick replied to my ping!

This triggers when a user replies to a ctcp PING that you sent.

10.3.6.7

on DCCSERVER

This event triggers when someone tries to connect to your DCC Server. The purpose of
this event is to allow you to monitor connections and to prevent someone from
connecting to your server by using /halt.

Format: on <level>:DCCSERVER:<Chat|Send|Fserve>:<commands>
Example: on 1:DCCSERVER:Send:echo $nick $address wants to send you $filename

Examples

on 1:DCCSERVER:Chat:/echo $nick $address wants to chat with you!

on 1:DCCSERVER:Send:if (.exe isin $filename) /halt
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The above event checks triggers when someone wants to send you a file, and if the file
they are sending ends in .exe, it cancels the send by using the /halt command.

10.3.6.8

on DNS

The on DNS event triggers when a /dns query either succeeds or fails.

Format: on <level>:DNS:<commands>
Example: on 1:DNS:/notice $me Resolved: $raddress

Examples

on 1:DNS:{
  var %n = $dns(0)
  echo 4 Found %n addresses
  while (%n > 0) {
    echo 4 dns: $dns(%n) nick: $dns(%n).nick addr: $dns(%n).addr ip: $dns(%n).ip
    dec %n
  }
}

Note: This event is also triggered if you try to /dns a nickname, and the nickname is not
on IRC.

The $dns(N) identifier
This identifier can be used only in the on DNS event, and returns the address that was
resolved and any associated IP addresses.

Properties: nick, addr, ip

$dns(N) without a property returns the address being resolved.

You can use N = 0 to return the number of addresses found.

You can use $dns(0).nick/addr/ip to reference properties if an address could not be
resolved.

10.3.6.9

on ERROR

The on ERROR event triggers when an IRC Server sends an ERROR message, this
usually occurs on a disconnection.

Format: on <level>:ERROR:<matchtext>:<commands>
Example: on 1:ERROR:*server full*:/echo Try another server!

For an explanation of matchtext see the on TEXT event.
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Examples

on 1:ERROR:*banned*:/echo I am banned from this server *mumble*!

This triggers when you try to connect to a server and it tells you that you are banned.
The $1- parameters refer to the full error message.

Note: This event is not related to any kind of error reporting in mIRC itself.

10.3.6.10

on EXIT

The on EXIT event triggers when mIRC itself is closed.

Format: on <level>:EXIT:<commands>
Example: on 1:EXIT:/echo exiting mIRC!

Examples

The main purpose of this command is to allow scripts to exit cleanly, unset variables,
save settings, etc. when mIRC exits.

10.3.6.11

on FILESENT/FILERCVD

The on FILESENT and on FILERCVD events trigger when a dcc send or dcc get
succeeds.

Format: on <level>:FILESENT:<filename[,filename]>:<commands>
Example: on 1:FILESENT:*.txt:/msg $nick I have successfully sent you the $filename
text file

The on SENDFAIL and on GETFAIL events use the same format as above, and trigger
when a dcc send or dcc get fails.

Examples

on 1:FILESENT:*.txt,*.ini:/echo Sent $filename to $nick $address

This triggers when a dcc send succeeds in sending a .txt or .ini file to a user. $filename
refers to the filename that was transmitted.

on 1:FILERCVD:*.txt,*.ini:/echo Received $filename from $nick | /run notepad.exe
$filename

This triggers when a dcc get succeeds in getting a .txt or .ini file from a user.

on 1:SENDFAIL:*.txt:/echo I failed to send the text file $filename to $nick
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This triggers when a dcc send failed to send a .txt file to a user.

on 1:GETFAIL:*.zip:/echo I failed to get the zip file $filename from $nick

This triggers when a dcc get failed to get a .zip file from a user.

Note: you can use $send(-1) or $get(-1) to refer to the dcc associated with these
events.

10.3.6.12

on HOTLINK

The on HOTLINK event triggers when you move your mouse over a specific word in a
line of text in a window.

Format: on <level>:HOTLINK:<matchtext>:<*#?=!@>:<commands>

Examples

This event works somewhat differently from other events, and is best explained with an
example:

on ^1:HOTLINK:*help*:#:{
  if ($1 == helpme) return
  halt
}

on 1:HOTLINK:*:*:echo clicked word $1 in line $hotline $hotlinepos

The first ^ event is triggered when you move your mouse over a word that matches 
*help* in a channel window. You can then check $1 to see if you want the hotlink hand
to appear over the word. If you halt the event, no hand will appear. This allows you to
filter a word based on context.

The $hotline identifier returns the full line which contained the hotlink trigger.

The $hotlinepos identifier returns the line number and word position of the trigger.

The ^ event also triggers on a right-click. You can use $mouse.key to check if the right
mouse button is pressed.

The second non-^ event is triggered when you double-click on a word which has been
filtered through the first hotlink event.

Note: The script for hotlink events should be as small and as fast as possible since the
event triggers each time the mouse is moved over a word.
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10.3.6.13

on INPUT

The on INPUT event triggers when you enter text in an editbox and press enter.

Format: on <level>:INPUT:<*#?=!@>:<commands>
Example: on 1:INPUT:#mIRC:/echo You entered the text " $1- " in the #mIRC window

Examples

on 1:INPUT:#:/echo I just mumbled " $1- " in a channel

Triggers when you enter text in an editbox in a channel window and press enter. The $1-
parameters refer to the text that you entered. If you /halt this event, you can prevent
mIRC itself from processing your message.

on 1:INPUT:?:/echo I just mumbled " $1- " in a query window
on 1:INPUT:=:/echo I just mumbled " $1- " in a dcc chat
on 1:INPUT:!:/echo I just mumbled " $1- " in a fileserver

You can also specify a specific channel/window name instead of *#?=!@.

You can use the $ctrlenter identifier to test whether Control+Enter was pressed when
the user entered the text.

Note: You can use commands such as /say with on INPUT and they will send the
message to the window in which you are typing, however most commands/events do not
work this way and require you to specify the actual destination of a message.

10.3.6.14

on INVITE

The on INVITE event triggers when a user invites you to a channel.

Format: on <level>:INVITE:<#[,#]>:<commands>
Example: on 1:INVITE:#mIRC:/join $chan

Examples

on 2:INVITE:#:/join $chan | /timer 1 3 /describe $chan appears in a puff of smoke!

This triggers when a user with access level 2 invites you to any channel.

Note: If you want to automatically join a channel when someone invites you, it is easier
to turn on the Auto-Join option in the Options dialog.
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10.3.6.15

on JOIN/PART

The on JOIN and on PART events trigger when a user joins or parts a channel.

Format: on <level>:JOIN:<#[,#]>:<commands>
Example: on 1:JOIN:#mirc,#irchelp:/msg $nick hiya!

Examples

on 1:JOIN:#:/msg $chan Welcome $nick

This triggers when any user joins any channel which you are on.

on 5:PART:#mIRC,#newbies:/describe $chan waves bye-bye to $nick *sniff*

This triggers when a user with access level 5 leaves channels #mIRC or #newbies.

10.3.6.16

on KEYDOWN/KEYUP

The on KEYDOWN and on KEYUP events trigger when a user presses or releases a key
in a custom window.

Format: on <level>:KEYDOWN:<@>:<key,...,keyN>:<commands>
Example: on 1:KEYDOWN:@:*:echo User pressed key $keyval in $active

The on CHAR event returns translated keyboard presses and uses the same format as
above.

Examples

on 1:KEYDOWN:@frog:32:echo user pressed space bar in @frog

This triggers when a user presses the space bar key in window @frog.

on 1:KEYDOWN:@:37,38,39,40:echo pressed cursor key $keyval $keyrpt

This triggers when a user presses any of the cursor keys in any window.

$keyval returns the key code of the key being pressed.

$keychar returns the actual letter of the key being pressed.

$keyrpt returns $true if the key is repeating due to a user holding down the key.

$keylparam returns the result of the lParam value in the keyboard event.
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10.3.6.17

on KICK

The on KICK event triggers when a user is kicked from a channel.

Format: on <level>:KICK:<#[,#]>:<commands>
Example: on 1:KICK:#mirc,#irchelp:/msg $nick Oops! ;)

Examples

on 5:KICK:#:/invite $knick $chan | /msg $nick Hey, $knick is my friend!

This triggers when a user who has access level 5 is kicked out of any channel. $knick
refers to the nickname of the user who was kicked.

Comparing levels

You can compare the levels of the kicker and the kicked users by prefixing the line with
<,>,<=,=>,<>, or =, in the following way:

on >=2:KICK:#mIRC:/msg $chan $nick kicked $knick (legal)
on 1:KICK:#mIRC:/msg $chan $nick kicked $knick (illegal)

In this situation, if the kickers level is greater than or equal to the kicked users level,
then it is a legal kick. Otherwise, it defaults to the second on KICK event which indicates
that it is an illegal kick. Remember, this is comparing the kickers and kicked users
levels and has nothing to do with the level "2" in the definition.

Note: This event only works on a nickname because the IRC server only sends the
nickname of the user being kicked and not an address.

10.3.6.18

on LOAD/START

The on LOAD event triggers the first time a script file is loaded.

Format: on <level>:LOAD:<commands>
Example: on 1:LOAD:/echo mIRC Script Loaded!

The on START event uses the same format, and triggers the first time a script is loaded
and every time after that when mIRC is run.

Examples

on 1:LOAD:/echo Performing one-time initialization for this script!

Triggers the first time a script is loaded. The purpose of this event is to perform a
one-time initialization of settings.
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on 1:START:/echo Performing regular initialization for this script!

Triggers the first time a script is loaded, and each time after that when a script is loaded
when mIRC is run. The purpose of this event is to perform general initialization settings.

Note: When a file is loaded in the remote dialog, its initialization sections are not run
until after the dialog is closed. Only one of each of these events is allowed in a script.

10.3.6.19

on LOGON

The on LOGON event triggers before and after mIRC sends the standard PASS, NICK,
and USER messages to the server.

Format: on <level>:LOGON:*:<commands>
Example: on 1:LOGON:*:/echo Logged on to server

Examples

on ^*:LOGON:*:echo Logging on to $network $server

Triggers before mIRC sends the standard logon messages to the server. If you /halt this
event, mIRC will not send the standard logon messages, allowing you to send your own
messages.

on *:LOGON:*:echo Logged on to $network $server

Triggers after mIRC has sent the standard logon messages.

10.3.6.20

on MIDIEND/WAVEEND/MP3END

The on MIDIEND, on WAVEEND, and on MP3END events trigger when mIRC finishes
playing a sound.

Format: on <level>:MIDIEND:<commands>
Example: on 1:MIDIEND:/splay jazzy.mid

Examples

on 1:WAVEEND:/echo Finished playing $filename

Triggers when a wave file finishes playing. See the Playing Sounds section for more
information.

Note: These events will not trigger if you use /splay to play another sound or to stop a
sound being played, they only trigger if the sound finishes playing completely.
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10.3.6.21

on MODE

The on MODE event triggers when a user changes a channel mode.

Format: on <level>:MODE:<#[,#]>:<commands>
Example: on 1:MODE:#mIRC:/notice $me $nick changed $chan mode to $1-

The on SERVERMODE event uses the same format, and triggers when an IRC Server
changes a channel mode.

Examples

on @1:MODE:#:/notice $me $nick changed $chan mode to $1-

This triggers when a user changes a mode on any channel where you have Ops (the @
sign specifies the Op requirement, see the Access Levels section for more info). The
actual parameters of the mode change are stored in $1- which you would need to parse
yourself to enforce a particular mode.

Note: These events only trigger on channel mode changes not user mode changes such
as ops, bans, etc.

10.3.6.22

on NICK

The on NICK event triggers when a user changes nickname while on the same channel
as you.

Format: on <level>:NICK:<commands>
Example: on 1:NICK:/echo $newnick was previously known as $nick

Examples

on 1:NICK:/describe $newnick thinks $nick was a nicer nickname!

This triggers when a user changes their nickname on a channel.

10.3.6.23

on NOSOUND

The on NOSOUND event triggers when a user sends a Sound Request to play a sound
and you do not have that sound.

Format: on <level>:NOSOUND:<commands>
Example: on 1:NOSOUND:/notice $me Oops, $nick has $filename and I do not!
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Examples

on 1:NOSOUND:/msg $nick ! $+ $nick $filename

This triggers when you do not have the requested sound. $filename refers to the name
of the file that was requested.

Note: This will trigger whether the Warn if sound does not exist option is turned on or
off.

10.3.6.24

on NOTIFY/UNOTIFY

The on NOTIFY and on UNOTIFY events trigger when a user in your notify list joins or
leaves IRC.

Format: on <level>:NOTIFY:<commands>
Example: on 1:NOTIFY:/msg $nick Hiya! :)

Examples

on 1:NOTIFY:/msg $nick Hi! I am in #mIRC_Lounge, come over!

This triggers when a user in your notify list joins IRC.

on 1:UNOTIFY:/notice $me $nick just left IRC *sniff*

This triggers when a user in your notify list leaves IRC.

10.3.6.25

on OP/DEOP

The on OP and on DEOP events trigger when a user on a channel is opped or deopped.

Format: on <level>:OP:<#[,#]>:<commands>
Example: on 1:OP:#mirc,#irchelp:/msg $opnick Please do not abuse your Op status

The on VOICE/DEVOICE and on HELP/DEHELP events use the same format and
trigger when a user is voiced/devoiced or helped/dehelped respectively.

The on SERVEROP event also uses the same format and triggers when a user is opped
by a server.

The on RAWMODE event triggers independently of these events and allows you to parse
the raw mode line yourself.

Examples

on 9:OP:#:/mode $chan -o $opnick
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on 9:VOICE:#:/mode $chan -v $vnick
on 9:HELP:#:/mode $chan -h $hnick

This triggers when a user with access level 9 is opped/voiced/helped on any channel. 
$opnick refers to the nickname of the person being opped/deopped, $vnick the person
being voiced/devoiced, and $hnick the person being helped/dehelped.

on 1:DEOP:#beginner:/mode $chan +o $opnick

This triggers when any Op is deopped on channel #beginner.

on 1:SERVEROP:#:/mode $chan -o $opnick

This triggers when an irc server ops a user on any channel. You immediately deop them.

The $modefirst and $modelast identifiers return $true or $false depending on whether
the event is the first or last to trigger.

Comparing levels

You can compare the levels of the opper and the opped by prefixing the line with
<,>,<=,=>,<>, or =, in the following way:

on >=1:DEOP:#mIRC:/msg $chan $nick deopped $opnick (legal)
on 1:DEOP:#mIRC:/msg $chan $nick deopped $opnick (illegal)

In this situation, if the deoppers level is greater than or equal to the deopped users level,
then it is a legal deop. Otherwise, it defaults to the second line which indicates that it is
an illegal deop. Remember, this is comparing the oppers and opped users levels and has
nothing to do with the level 2 in the definition.

Note: These events only work on nicknames because the IRC server only sends the
nickname of the user being affected and not their address.

on RAWMODE

on @1:RAWMODE:#:/echo $chan Raw mode line: $nick set $1-

The on RAWMODE event allows you to parse the raw mode change yourself, the raw
mode text is in $1-.

You can use the $mode(N) identifier with these events to list the nicks that are being
affected.

10.3.6.26

on OPEN/CLOSE

The on OPEN and on CLOSE events trigger for various events relating to the opening
and closing of a window of different types of windows. In the case of dcc sessions, they
trigger when a dcc connection has opened or closed.
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Format: on <level>:OPEN|CLOSE:<?|@|=|!|*>:<matchtext>:<commands>
Example: on 1:CLOSE:?:echo -s closed $target query window

For an explanation of matchtext see the on TEXT event.

Examples

on ^1:OPEN:?:*:if ($nick == goat) halt

The above open event is an example of a ^ prefix event, which allows you to halt events.
In this example, if the incoming message is from a user with the nickname goat, the
query window is prevented from opening by using the /halt command.

Note: If you halt an on ^open event triggered by an incoming private message, no on
TEXT/ACTION events are triggered.

on 1:OPEN:?:*:/echo -s Just opened $target query window

The above example triggers just after a query window is opened.

on 1:OPEN:?:*hello*:/echo -s $nick just said hello!

This example triggers if the message which trigger on OPEN contained the word hello.
This allows you to react to user message in on OPEN instead of waiting for on TEXT to
trigger.

on 1:CLOSE:?:/echo -s you just closed $target query window

This triggers when you close a query window.

on 1:OPEN:=:/msg =$nick Hi! I will be with you in a second...

This triggers when a dcc chat connection is first established. The equal sign in =$nick is
required to send the reply as a dcc chat message.

on 1:CLOSE:=:/notice $me $nick just left the discussion!

This triggers when a dcc chat session ends, or when you close your chat window
manually.

on 1:OPEN:!:/msg =$nick Welcome to my fileserver!
on 1:CLOSE:!:/echo -s $nick just ended her fileserver session

These trigger when a dcc filserver session is first established and when it is closed.

Note: DCC events react to all users level 1 and above because of the way DCCs work.

on 1:CLOSE:@:/echo -s Just closed $target custom window

The above triggers when a custom window is closed. The OPEN event does not trigger for
custom windows.



105

 

Note: These events do not trigger for any other types of windows. Channel windows are
handled by the on JOIN/PART events.

10.3.6.27

on PARSELINE

The on PARSELINE event triggers before incoming/outgoing server lines are
received/sent and allows a script to modify them.

Format: on <level>:PARSELINE:<in|out|*>:matchtext:<commands>
Example: on *:PARSELINE:*:*:echo $parsetype $parseline

The /parseline command
The incoming/outgoing server line can be modified using the following command:

/parseline -iotbqpnuN [text|&binvar]

-i or -o = required to specify an in/out line.

-t or -b = required to specify text or &binvar.

-q = add a new line to the end of the in/out queue. It can be used inside and outside the
PARSELINE event. New lines are processed after the script/event exits.

-p = use with -q to indicate that the new line should trigger the PARSELINE event.

-n = add a CRLF to the end of the line, if it does not have one, when sending the line to a
server.

-uN = where N is 0 or 1 and either disables or enables UTF-8 encoding/decoding for the
line.

Note: A script must check $parseutf to know whether mIRC will be UTF-8
encoding/decoding a line. For outgoing lines, if $parseutf is $true, after the PARSELINE
event, mIRC will UTF-8 encode the line before sending it to the server. You can prevent
this by using -u0. For incoming lines, if $parseutf is $true, after the PARSELINE event,
mIRC will UTF-8 decode the line before processing it. You can prevent this by using -u0.

Warning: This feature should only be used, for example, to support features and/or
protocols that mIRC does not already support, not to modify standard lines. mIRC
maintains internal states based on incoming and outgoing lines. If lines are modified,
mIRC may not work correctly. 

Examples

; This example converts incoming/outgoing lines to upper case
on *:PARSELINE:*:*:{
  echo PARSELINE: $parsetype : $parseutf : $parseline

  if ($parsetype == in) {
    var %pl = $parseline
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    ; UTF decode the line ourselves
    if ($parseutf) %pl = $utfdecode(%pl)

    ; Convert the line to upper case
    %pl = $upper(%pl)

    ; Replace the current incoming line with our line
    ; We use -u0 to prevent mIRC from UTF decoding the line as we have already done
that
    parseline -itu0 %pl

    ; The line will only be processed after our script returns
    return
  }

  if ($parsetype == out) {
    var %pl = $parseline

    ; Convert line to upper case
    %pl = $upper(%pl)

    ; UTF encode the line ourselves
    if ($parseutf) %pl = $utfencode(%pl)

    ; Replace the current outgoing line with our line
    ; We use -u0 to prevent mIRC from UTF encoding the line as we have already done
that
    parseline -otu0 %pl

    ; The line will only be processed after our script returns
    return
  }

  ; The original incoming/outgoing line will be processed as normal
}

Note: If the IRCv3 echo-message token is enabled on a server, the $parseem identifier
is set to $true if the current line is considered an echoed line that is not meant to be
displayed.

10.3.6.28

on PING/PONG

The on PING event triggers when a server sends you a PING message to see if you are
still connected.

The on PONG even triggers when you receive a PONG reply from the server after
sending it a ping.

Format: on <level>:PING:<commands>
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Example: on 1:PING:/echo -s $nick sent me a PING

Examples

on 1:PING:/notice $me Wake up! The server is PINGing you: $1-

This triggers when the server pings you. The $1- parameters hold the ping message.

on 1:PONG:echo pong reply: $1-

This triggers when the server replies to your ping.

Note: You cannot use this to intercept /pings to your own nickname, this is used
internally by mIRC.

10.3.6.29

on PLAYEND

The on PLAYEND event triggers when the /play command has finished playing a file.

Format: on <level>:PLAYEND:<commands>
Example: on 1:PLAYEND:/echo The play command has finished playing $filename

Note: Text files can be played ie. sent to users or channels on IRC by using the /play
command.

10.3.6.30

on QUIT

The on QUIT event triggers when a user quits IRC while on the same channel as you.

Format: on <level>:QUIT:<commands>
Example: on 1:QUIT:/notice $me $nick just quit IRC with the message $1-

Examples

on 1:QUIT:/ame waves bye-bye to $nick *sniff*

This triggers when a user quits IRC while on the same channel as you. The $1-
parameters hold the user's quit message.

10.3.6.31

on SNOTICE

The on SNOTICE event triggers when you receive a server notice.

Format: on <level>:SNOTICE:<matchtext>:<commands>
Example: on ^1:SNOTICE:*client connecting*:/halt
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For an explanation of matchtext see the on TEXT event.

Examples

on 1:SNOTICE:*hack*:/splay hack.wav

This triggers when a server notice contains the word hack.

10.3.6.32

on TABCOMP

The on TABCOMP event triggers when you press the TAB key in an editbox and mIRC is
about to perform tab completion.

Format: on <level>:TABCOMP:<*#?=!@>:<commands>
Example: on 1:TABCOMP:#mIRC:/echo event: $event target: $target line: $1-

Halting this event prevents default tab completion.

Note: This event is not triggered in an empty editbox if you have the Tab key changes
editbox focus option enabled.

10.3.6.33

on TEXT

The on TEXT event triggers when you receive private and/or channel messages.

Format: on <level>:TEXT:<matchtext>:<*><?><#[,#]>:<commands>
Example: on 1:TEXT:*help*:#mirc,#irchelp:/msg $nick what is the problem?

The on ACTION and on NOTICE events use exactly the same format as on TEXT, and
trigger on an action and on a notice event respectively.

The match text can be a wildcard string, where:

  * matches any text
  & matches any word
  text matches if text contains only this word
  text* matches if text starts with this word
  *text matches if text ends with this word
  *text* matches if text contains this word anywhere

The match text can also be a regular expression. See the $ prefix section in Access
Levels.

The location where this event occurs can be specified using:
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  ? for any private message
  # for any channel message
  #mirc for any messages on channel #mirc
  * for any private or channel messages

Examples

on 1:TEXT:hello*:#:/msg $chan Welcome to $chan $nick!

This listens on any channel for any line beginning with the word hello and welcomes the
user who said it to the channel.

on 1:TEXT:*cookie*:#food:/describe $chan gives $nick a cookie :)

This listens on channel #food for any message containing the word cookie and gives the
user who said it a cookie.

on 1:ACTION:moo:#:/msg $chan Aha, I see we have a cow among us.

This listens on any channel for an action that contains the word moo and responds
accordingly.

on 1:NOTICE:*:?:/msg $nick I am AFK, back in a moment!

This listens for any private notice and responds with the message that you are away from
the keyboard.

For more flexibility, you can also use Variables in place of both the matchtext and the
channel parameters.

on 1:TEXT:%matchtext:%channel:/msg $nick You just said $1- on channel %channel

The value of %matchtext will be matched against whatever text the user sends, and the
value of %channel will be matched against the channel to which the message was sent.

Note: You cannot test out these events by typing text to yourself. They can only be
initiated by someone else saying something in a channel or in a private message.

10.3.6.34

on TOPIC

The on TOPIC event triggers when a user changes a channel topic.

Format: on <level>:TOPIC:<#[,#]>:<commands>
Example: on 1:TOPIC:#mIRC:/msg $chan Hmm, odd topic!

Examples

on 1:TOPIC:#mIRC4Dummies:/describe $chan admires $nick $+ 's new topic!

This triggers when a user changes the topic on channel #mIRC4Dummies. The $1-
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parameters hold the actual text of the new topic.

10.3.6.35

on UNLOAD

The on UNLOAD event triggers in a script when the script is unloaded.

Format: on <level>:UNLOAD:<commands>
Example: on 1:UNLOAD:/echo mIRC Script unloading

Examples

on 1:UNLOAD:/echo Unloading script $script

Triggers in the script when it is unloaded. The purpose of this event is to allow a script to
cleanup.

10.3.6.36

on USERMODE

The on USERMODE event triggers when you change your usermode.

Format: on <level>:USERMODE:<commands>
Example: on 1:USERMODE:/echo You changed your usermode to $1-

Examples

on 1:USERMODE:/echo Usermode for $nick is now $1-

Triggers when your usermode changes. The $1- parameters refer to the new usermode.

10.3.6.37

on WALLOPS

The on WALLOPS event triggers when you receive a wallops message.

Format: on <level>:WALLOPS:<matchtext>:<commands>
Example: on 1:WALLOPS:*warning*:/echo $nick issued warning at $time

For an explanation of matchtext see the on TEXT event.

Examples

on 1:WALLOPS:*oink*:/splay oink.wav

This triggers when a wallops notice contains the word oink.
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10.3.7

Halting text

mIRC displays its own default text for various types of IRC Server events, such as users
joining or parting a channel, however you can modify or suppress this by using a script.

The ^ event prefix
You can prevent the default text for an event from being shown by using the ^ prefix in
an event definition. This allows you to show your own custom event messages.

on ^1:JOIN:#:echo $chan Joins: $nick | halt

This line is triggered by a JOIN event and shows your own custom join event message,
/halt prevents the normal message from being shown.

The ^ events do not replace your existing events; your normal events are independent
and are still processed whether there is a ^ event in a script or not.

If you only want to halt the default text without /halting the entire script, you can use
the /haltdef command.

You can check if a script has already halted the default text by using the $halted
identifier; it returns $true if a user has used /halt or /haltdef in a ^ event, and $false if
not.

The ^ event prefix works only on certain events, such as ACTION, TEXT, JOIN, and so
on. You would need to try out the ^ prefix with an event to see if it works with it.

Note: Halting the default text for an event affects how mIRC displays the most basic
information about IRC events to a user, so it should be used carefully.

10.3.8

Example Script

The following example script shows you how you can place related aliases, popups, and
events in a single file making it easier to distribute a whole script to other people.

;Moo Script v1.0 - contains moo related functions

;This menu definition adds a submenu to your channel popup menu

menu channel {
  Moo
  .happily:/describe # moos happily
  .woefully:/describe # moos woefully
  .philosophically:/describe # MUs
  .colorfully:/describe # moos in several hues
}
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;These add aliases for shortcuts to often used messages

alias how /msg $1 How now brown cow?
alias moo /sound moo.wav moooos

;This adds a ctcp command which reacts to a moo ctcp from someone

ctcp 1:moo:*:/notice $nick Sorry, I am all out of moos right now.

;These add events which react to specific words said on a channel

on 1:text:*moo*:#:/msg $chan okay, who let the cow loose?
on 1:text:*grass*:#:/describe $chan dribbles hungrily

;These add join and part events which react to a user joining/parting
;the channel #moo

on 1:join:#moo:{
  /msg $nick Welcome $nick to channel #moo!
  /msg $nick This is a herd-oriented channel, there are calfs present!
  /msg $nick Please refrain from profane mooing and/or bleating
  /msg $nick Mammals engaging in such acts will be promptly demooted
}

on 1:part:#moo:/msg $nick Thanks for grazing with us on #moo!

;The following line is processed while you are doing a channels list. It
;prints to the status window any channel name/topic that has the
;word moo in it

raw 322:*moo*:/echo -s $2-

10.4

Variables

Variables are temporary storage areas to which you can assign values which you can
use later in your scripts.

If a variable is referred to and it does not exist, it returns the value $null. The $null
value can be used in comparisons in if-then-else statements to control branching etc.

The following commands allow you to create and set the values of variables.

/set [-snzeglkipuN] <%var> [value]
This sets the value of %var to the specified value.

If you specify the -uN switch, %var is unset after N seconds, assuming it is not set again
by another script. If you specify a zero for N, the variable is unset when the script
finishes.

The -g switch sets a global variable. Normally, if a local variable already exists, it takes
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precedence, so this switch allows you to override that.

The -k switch keeps the current -uN setting for a variable.
The -n switch prevents mathematical operations.
The -z switch decreases %var until it reaches zero and then unsets it.
The -e switch unsets the variable when mIRC exits.
The -l switch makes the variable a local variable.
The -i switch initializes a variable only if it does not already exist.
The -p switch treats value as literal text, including quotes and spaces.

/unset [-sgl] <%var>
This unsets and removes the specified variables from the variables list. If you specify a
variable with wildcard characters then all matching variables will be removed.

The -gl switches unset a global or local variable respectively.

/unset %test*

This will remove all variables beginning with the word %test.

You can also set/unset dynamic variables using [] brackets:

vartest  {
  set %a [ $+ b ] 1
  set %a [ $+ c ] 2
  set %a [ $+ d ] 3

  echo ab = %ab
  echo ac = %ac
  echo ad = %ad

  unset %a [ $+ b ] %a [ $+ c ] %a [ $+ d ]
}

/unsetall
This unsets and removes all variables from the variables list.

/inc [-cszeuN] <%var> [value]
This increases the value of %var by value.

If you specify the -uN switch, %var is increased by the value once and then %var is
unset N seconds later, assuming it is not set again by another script.

The -c switch increases %var once per second.
The -z switch decreases %var until it reaches zero and then unsets it.
The -e switch unsets the variable when mIRC exits.

/dec [-cszeuN] <%var> [value]
This decreases the value of %var by value.

If you specify the -uN switch, %var is decreased by the value once and then %var is
unset N seconds later, assuming it is not set again by another script.
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The -c switch decreases %var once per second.
The -z switch decreases %var until it reaches zero and then unsets it.
The -e switch unsets the variable when mIRC exits.

Assigning values
The equal sign can be used to assign values to variables:

%i = 5
%xyzi = 3.14159
%count = $1
%text = how now brown cow?

Mathematical operations
The following operations can be performed when using the equal sign:

%x = 5 + 1
%x = 5 - %y
%x = %x * 2
%x = %z / $2
%x = $1 % 3
%x = 2 ^ %w

Only a single operation can be performed in an assignment.

Note: operations are performed on the final contents of the value being assigned. This
means that the -n switch, with /set or /var, will need to be used, as in the following
example, to prevent a double evaluation.

If %y is the literal text 1 + 2:

set %x %y
echo x: %x is equal to 3

set -n %x %y
echo x: %x is equal to 1 + 2

You can also use the $calc() identifier which allows you to perform complex calculations.

//echo 1 $calc(3.14159 * (2 ^ %x % 3) - ($ticks / (10000 + 1)))

For floating point numbers you can also use the $round(N,D) and $int(N) identifiers
to handle precision of the decimal digits. The number of decimals is currently limited to 5
digits.

Local Variables
Local variables are variables that exist only for the duration of the script in which they
are created and can only be accessed from within that script. They can be created with
the /var command:

/var %x

This creates the local variable %x in the current routine and can only be referenced from
inside this routine.
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/var %x = hello

This creates a local variable %x and assigns it the value hello.

You can create multiple local variables by separating them with commas:

/var %x = hello, %y, %z = $me

loop {
  var %x = 1
  :next
  echo item %x
  inc %x
  if (%x < 10) goto next
}

Note: This uses the same switches as the /set command.

Identifiers

$var(%var,N)
Returns the Nth matching variable name.

Properties: value, local, secs

You can use a wildcard in the variable name.

If N = 0, returns total number of matching variable names.

Note: This searches both local and global variables.

Big Float

If a script needs to perform calculations with very large numbers, it can enable big float
support either for a specific command or for the whole script using the following
methods:

To enable big float for a command, use a variable with a .bf extension, such as %var.bf.
When used in a command/identifier, this enables big float calculations for that
command/identifier.

To enable big float for the whole script, use the /bigfloat [on|off] command. This will
affect all calculations in commands and identifiers until the script exits.

A script can check if big float is currently enabled by using the $bigfloat identifier.

Note: Big float calculations are much slower than normal calculations, so should only be
used when necessary.
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10.5

Identifiers

Identifiers return specific values, eg. $time would return the current time. Whenever
mIRC finds an identifier in a command or script, it replaces it with the current value of
that identifier. Many identifiers also perform actions on data that you supply and then
return a result.

Identifiers that cannot be evaluated or evaluate to no value return the value $null. The
$null value can be used in comparisons in if-then-else statements to control branching
etc. You can also place identifiers or variables inside the brackets of other identifiers and
they will be evaluated.

The identifiers are organized by groups as follows:

File and Directory Identifiers
Nick and Address Identifiers 
Text and Number Identifiers
Time and Date Identifiers
Token Identifiers
Window Identifiers
Other Identifiers

There are also special identifiers for Remote Scripts, as well as for many other
script-related features.

10.5.1

File and Directory Identifiers

$abook(nick,N)
Returns information about nicknames listed in the address book.

Properties: nick, info, email, website, picture, noteN

Allowed formats: $abook(nick) $abook(N) $abook(nick,N) where nick can also be a
wildcard.

$alias(N/filename)
Returns the filename for the Nth loaded alias file. If you specify a filename, it returns
$null if the file is not loaded.

$alias(0) return the number of alias files loaded
$alias(2) returns the filename of the 2nd loaded alias file
$alias(moo.txt) returns $null if the file is not loaded, or moo.txt if it is.

$crc(text|&binvar|filename,[N])
Returns the CRC checksum of the specified item, where N = 0 for plain text, 1 for
&binvar, 2 for filename (default).
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Note: $crc64() can also be used to return the 64bit checksum.

$disk(path|N)
Returns information about the specified hard disk, where N = 0 for total available drives,
and N > 0 to access each drive.

Properties: type, free, label, size, unc, path

$disk(c:)  returns $true if drive c: exists, otherwise $false

The unc property returns the path for a network drive.

$exists(file/dir)
Returns $true if a file or dir exists and $false if it does not.

$exists(mirc.exe)  returns $true or $false.

$file(filename)
Returns information about the specified file.

Properties: size, ctime, mtime, atime, shortfn, longfn, attr, sig, version, path, name,
ext

$file(mirc.exe).size   returns the file size
$file(mirc.exe).ctime   returns creation time
$file(mirc.exe).mtime   returns last modification time
$file(mirc.exe).atime   returns last access time

$filtered
Returns the number of lines that were filtered when using the /filter command.

$finddir(dir,wildcard,N,depth,@window | command)
Searches the specified directory and its subdirectories for the Nth directory name
matching the wildcard specification and returns the full path and directory if it is found.

Properties: shortfn

$finddir($mircdir,logs*,1)  returns the first directory name beginning with "mirc"

If you specify a custom @window (with a listbox) instead of the N parameter, mIRC will
fill the custom @window listbox with the results.

If you specify a command, the command is performed on every directory that is found.
You can use $1- to refer to the directory name, eg. //echo 1 $finddir($mircdir,*.*,0,echo
$1-)

If you use /halt in the command/alias, this halts the search.

If you specify a depth, mIRC will only search N directories deep for matching filenames.

The $finddirn identifier returns the Nth position of directory that was found.



mIRC Help118

 

Note: Both the depth and @window/command parameters are optional.

$findfile(dir,wildcard,N,depth,@window | command)
Searches the specified directory and its subdirectories for the Nth filename matching the
wildcard file specification and returns the full path and filename if it is found.

Properties: shortfn

$findfile($mircdir,*.exe,1)  returns the first .exe file it finds

If you specify a custom @window name (with a listbox), the custom @window listbox will
be filled with the results.

If you specify a command, it will be performed on every filename that is found. You can
use $1- to refer to the filename, eg. //echo 1 $findfile($mircdir,*.*,0,echo $1-)

If you use /halt in the command/alias, this halts the search.

If you specify a depth, mIRC will only search N directories deep for matching filenames.

You can specify multiple wildcards by separating them with semi-colons, eg.
*.exe;*.txt;*.hlp.

The $findfilen identifier returns the Nth position of file that was found.

Note: Both the depth and @window/command parameters are optional.

$getdir
Returns the DCC Get directory specified in the DCC Options dialog.

$getdir(filename)
Returns the DCC Get directory for the specified filename. You can also specify a file type
such as *.txt.

$ini(file,topic/N,item/N)
Returns the name/Nth position of the specified topic/item in an ini/text file.

$ini(mirc.ini,0)  returns total number of topics in mirc.ini
$ini(mirc.ini,1)  returns name of 1st topic in mirc.ini
$ini(mirc.ini,help) returns Nth position of topic help if it exists, or returns 0 if it does not
exist

The item/N parameter is optional. If you specify N = 0, it returns the total number of
topics/items.

Note: The behaviour of this identifier varies across versions, where either 0 or $null may
be returned for a non-existent item.

$isdir(dirname)
Returns $true if the specified directory exists, otherwise $false.

$isfile(filename)
Returns $true if the specified file exists, otherwise $false.
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$lines(filename)
Returns the total number of lines in the specified text file.

$logdir
Returns the Logs directory as specified in the Logging section of the Options dialog.

$longfn(filename)
Returns long version of a short filename.

$mididir
Returns the Midi directory specified in the Sound Requests section of the Options dialog.

$mircdir
Returns the directory where mIRC stores its settings, such as mirc.ini, and other files and
folders.

$mircexe
Returns the full path and filename of the mIRC executable file.

$mircini
Returns the name of the main .ini file, usually mirc.ini.

$mklogfn(filename)
Returns the filename format that the logging feature uses. Appends date to filename if
you have the dated logfiles option turned on in the logging dialog.

You can also use $mknickfn(nickname) to fix a nickname for use as a filename, and
$mkfn(filename) to fix a filename, both of which may replace/remove invalid characters.

$msfile(dir,title,oktext)
Displays the multiple select file dialog and returns N, the number of selected files.
$msfile(N) returns each file. If too many files are selected, $msfile() returns -1. Title and
oktext are optional. See $sfstate for cancel/error handling.

$nofile(filename)
Returns the path in filename without the actual filename.

$nopath(filename)
Returns filename without a path, if it has one.

$read(filename, [ntswrp], [matchtext], [N])
Returns a single line of text from a file.

This identifier works in conjunction with the /write command.

//echo $read(funny.txt)

Reads a random line from the file funny.txt.

//echo $read(funny.txt, 24)

Reads line 24 from the file funny.txt.
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//kick # $1 $read(kicks.txt)

Reads a random kick line from kicks.txt and uses it in the kick command.

//echo $read(info.txt, s, mirc)

Scans the file info.txt for a line beginning with the word mirc and returns the text
following the match value.

//echo $read(help.txt, w,  *help*)

Scans the file help.txt for a line matching the wildcard text *help*. The r switch implies a
regex match.

If you specify the s, w, or r switches, you can also specify the N value to specify the line
you wish to start searching from in the file, eg.:

//echo $read(versions.txt, w, *mirc*, 100)

If the n switch is specified then the line read in will not be evaluated and will be treated
as plain text.

If the p switch is specified, command | separators are treated as such instead of as plain
text.

If the first line in the file is a number, it must represent the total number of lines in
the file. If you specify N = 0, mIRC returns the value of the first line if it is a number.

If the t switch is specified then mIRC will treat the first line in the file as plain text, even
if it is a number.

$readn
Returns the line number that was matched in a previous call to $read(). If no match was
found, $readn is set to zero.

$readini(filename, [np], section, item)
Returns a single line of text from an ini file

This identifier works in conjunction with the /writeini command.

//echo $readini(mirc.ini, mIRC, nick)

Reads your nickname from the mirc.ini file.

If the n switch is specified then the line read in will not be evaluated and will be treated
as plain text.

If the p switch is specified, command | separators are treated as such instead of as plain
text.

$samepath(path1,path2)
Returns $true/$false if paths refer to the same file/dir. It resolves relative paths and
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converts long/short filenames.

$sdir(dir,title)
Displays the select folder dialog and returns the selected folder. Title is optional. See
$sfstate for cancel/error handling.

$sfile(dir,title,oktext)
Displays the select file dialog and returns the selected filename. Title and oktext are
optional. The dir can include a wildcard as a file mask.  See $sfstate for cancel/error
handling.

$sfstate
Returns cancel if a user cancels the dialog or error if there is an error.

$shortfn(filename)
Returns short version of a long filename.

$sysdir(item)
Returns system folders for the current user where item can be profile, desktop,
documents, downloads, music, pictures, and videos.

$tempfn
$tempfn(path)
Returns a unique temporary file/folder name located in the mIRC folder, using the same
method that mIRC uses internally. To use a different folder, specify its path as a
parameter.

$zip(file.zip,cetlpo,file|dir,password,N)
Enables creation and extraction of zip files.

Properties: size, crc, mtime, cm, em, idx

Supports the following switches: c = create, e = extract, t = test, l = list, p = password,
o = overwrite existing file/dir.

The N parameter is used with the list option, where 0 = return number of items,
otherwise return Nth item, with properties: size.

If password is specified when creating a zip, encrypts the zip file using AES.

10.5.2

Nick and Address Identifiers

$address(nickname,type)
Searches the Internal Address List for the address associated with the specified
nickname. You must read about the IAL before you use this identifier.

$address(nick,1)  returns *!*user@host

If the Internal Address List does not contain a matching nickname, the identifier returns
$null.
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See $mask() for a list of types.

$anick
Returns your alternate nickname.

$comchan(nick,N)
Returns the names of channels which both you and nick are on.

Properties: op, help, voice

$comchan(nick,0) returns the total number of common channels
$comchan(nick,1) returns the first common channel name
$comchan(nick,1).op returns $true if you are an op on the channel

$ial
Returns $true or $false depending on whether the IAL is on or off.

$ial(nick/mask,N)
Returns the Nth address matching mask in the IAL.

$ialchan(nick/mask,#,N)
Returns the Nth address on the specified channel matching mask in the IAL.

Properties: pnick

$ibl(#channel,N)
$iel(#channel,N)
$iil(#channel,N)
$iql(#channel,N)
Returns Nth item in the internal ban/exception/invite/quiet list, or if N is 0 returns total
number of items in that list.

Properties: by, date, ctime

$ibl(#mirc,1) returns the first address in the ban list
$ibl(#mirc,1).by returns the address of the user who set the ban
$ibl(#mirc,1).date returns the date when the user set the ban
$ibl(#mirc,1).ctime returns $ctime format for ban date

Note: See $chan() for more information.

$level(address)
Finds a matching address in the remote users list and returns its corresponding levels
list.

$level(*!*@mirc.com)  returns =5,10,20,21,32

$link(N)
Returns the Nth item listed in the server Links window.

Properties: addr, ip, level, info
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$link(0)  returns the total number of links in the links window
$link(1)  returns the Nth server address in the links window

$mask(address,type)
Returns address with a mask specified by type.

$mask(nick!user@mirc.com,1)  returns *!*user@mirc.com
$mask(nick!user@mirc.com,2)  returns *!*@mirc.com

The available types are:

  0: *!user@host
  1: *!*user@host
  2: *!*@host
  3: *!*user@*.host
  4: *!*@*.host
  5: nick!user@host
  6: nick!*user@host
  7: nick!*@host
  8: nick!*user@*.host
  9: nick!*@*.host

You can also specify a type of 10 to 19 which correspond to masks 0 to 9, but instead of
using a * wildcard to replace portions of the host, mIRC uses ? wildcards to replace the
numbers in the address.

This standard set of masks is also used in other identifiers and commands.

$me
Returns your current nickname.

$mnick
Returns your main nickname.

$nick(#,N/nick,aohvr,aohvr)
Returns Nth nickname in the channels nickname listbox on channel #.

Properties: color, pnick, idle

$nick(#mIRC,0)  returns the total number of nicknames on #mIRC
$nick(#mIRC,1)  returns the 1st nickname on #mIRC

Both aohvr parameters are optional. The first specifies which nicks you would like
included, and the second specifies the nicks you would like excluded, where:

   a = all nicks, o = ops, h = halfops, v = voiced, r = regular

$nick(#mIRC,1,o)  return the first op on #mIRC
$nick(#mIRC,0,a,o)  return the total number of nicks not including ops on #mIRC

The pnick property returns the nickname in a .@%+nick format.

The idle property returns the time the user has been idle on the specified channel, ie.
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the time since the user last sent a message to the channel.

Note: See the $prefix identifier for more information.

$nickmode
Returns the channel nickname modes supported by the current server.

$notify
Returns $true or $false depending on whether the notify list is on or off.

$notify(N/nick)
Returns the Nth nickname in your Notify list.

Properties: ison, note, sound, sound2, whois, addr, network

$notify(0) returns the number of nicknames in your notify list.
$notify(3) returns the 3rd nickname in your notify list.
$notify(3).ison returns $true if this user is on IRC, $false if not.
$notify(goat) returns the Nth position of nickname goat in the notify list.
$notify(3).addr returns the address associated with a notify nick if an IRC server
supports this in notify replies or if the IAL is filled.

$snicks
Returns a string of the currently selected nicknames in the active channel listbox in the
form:

nick1,nick2,nick3,...,nickN

$snick(#,N)
Returns the Nth selected nickname in the channel listbox on channel #.

$snick(#mIRC,0)    returns the total number of selected nicknames on #mIRC
$snick(#mIRC,1)    returns the 1st selected nickname on #mIRC

Note: If the N parameter is not specified, it returns a line containing all selected
nicknames.

$snotify
Returns the currently selected nickname in the notify list box.

$trust(N)
Returns the Nth item in the dcc trust list, or if N is 0 returns total number of items in list.

10.5.3

Text and Number Identifiers

$abs(N)
Returns the absolute value of number N.

$abs(5)   returns 5
$abs(-1)  returns 1
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$and(A,B)
Returns A binary and B.

$asc(C)
Returns the ascii number of the character C.

$asc(A)  returns 65
$asc(*)   returns 42

$base(N,inbase,outbase,zeropad,precision)
Converts number N from inbase to outbase. The last two parameters are optional.

$base(15,10,16) returns F
$base(1.5,10,16) returns 1.8
$base(2,10,16,3) returns 002

$biton(A,N)
Returns the A value with the Nth bit turned on.

$bitoff(A,N)
Returns the A value with the Nth bit turned off.

$bytes(N,bkmpgt3d)
Returns comma formatted file-size.

Properties: suf

The bkmgt options return the result as bytes, kilobytes, etc.

The 3 option returns a result in 3 digit format and overrides the other options.

The d option retains decimal point values.

The .suf property appends the b, k, M, G, T suffixes to the result.

$calc(operations)
Returns the result of the specified operations. This identifiers allows you to perform
multiple operations easily. For example:

$calc(3.14159 * (2 ^ %x % 3) - ($ticks / (10000 + 1)))

$cbrt(N)
Returns the cube root of N.

$ceil(N)
Returns N rounded to the next highest integer.

$chr(N)
Returns the character with ascii number N.

$chr(65)  returns A
$chr(42)  returns *
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$compress(file|&bvar, blNmN)
$decompress(file|&bvar)
Compresses the specified file or binary variable. Returns 1 for success, 0 for failure.

The b option indicates that the first parameter is a binary variable.
The lN option sets a compression level of 1 to 9 (default is 6).
The mN option sets the compression method, where N = 1 is raw, N = 2 is zlib (the
default), and N = 3 is gzip.

$cos(N), $cosh(N), $acos(N)
Return the cosine, hyperbolic cosine, and arccosine of N.

Properties: deg

$count(string,substring,substring2,...,substringN)
Returns the number of times substring occurs in string.

$count(hello,el)  returns 1
$count(hello,l)    returns 2

Note: $countcs() is the case-sensitive version.

$encode(%var | &binvar, amubt, N)
$decode(%var | &binvar, amubt, N)
Encode or decode text in %vars or &binvars.

The second parameter consists of switches, where a = base32, m = mime, u = uucode
(default), v = z85, b = &binvar, and t = text (default).

If encoding/decoding a &binvar, the identifiers return the actual number of characters
written to the &binvar. Note that encoding uses more storage space than the original
data.

The last two parameters are optional, default to uuencode, and N = 1.

If you want to retrieve the result in chunks, you can use the N parameter to retrieve the
Nth encoded chunk. N = 0 returns the total number of chunks. This only applies when
encoding. When decoding, one line of combined chunks must be decoded at once, so N =
0 always return 1.

These identifiers also support blowfish encryption. The identifier format is:

$encode(%var | &binvar, switches, key, [salt | iv])
$decode(%var | &binvar, switches, key, [salt | iv])

Where the switches are:
  method: c = cbc or e = ecb encryption (one or the other)
  key: l = literal key (optional)
  salt/iv: s = salt or i = iv or r = randomiv (all optional)
  padding: z = zeros, n = one and zeros, p = spaces (all optional)

$floor(N)
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Returns N rounded to the next lowest integer.

$gcd(N,N2,...)
Returns the greatest common divisor of a list of numbers.

$hypot(N,M)
Returns the length of the hypotenuse.

$int(N)
Returns the integer part of a floating point number with no rounding.

$int(3.14159)  returns 3

$intersect(x1,y1,x2,y2,x3,y3,x4,y4,method)
Returns the point at which two lines/rays intersect.

The method parameter is optional. If not specified, two lines are compared. If specified,
it can be lr, rl, rr = line/ray, ray/line, ray/ray.

$isbit(A,N)
Returns 1 if the Nth bit in number A is turned on.

$islower(text)
Returns $true if text is all lower case.

$isnum(N,sd,I,J)
Returns $true if N is a number, where s = allow +/- sign, d = allow decimal, and range is
between I and J.

The switches and range parameters are optional.

$isupper(text)
Returns $true if text is all upper case.

$lcm(N,N2,...)
Returns the least common multiple of a list of numbers.

$left(text,N)
Returns the N left characters of text.

$left(goodbye,4)  returns good

If N is a negative value, it returns all but N characters.

$len(text)
Returns the length of text.

$len(#mIRC)  returns 5

$log(N), $log2(N), $log10(N)
Returns logarithms of N.

$longip(address)
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Converts an IP address into a long value and vice-versa.

$longip(158.152.50.239)  returns 2660774639
$longip(2660774639)       returns 158.152.50.239

$lower(text)
Returns text in lowercase.

$lower(HELLO)  returns hello

$mid(text,S,N)
Returns N characters starting at position S in text.

$mid(othello,3,4)  returns hell

If N is zero, it returns the number of characters from S to the end of the line.

You may also use negative numbers for S or N.

$min(N)/$max(N)
Return minimum/maximum of a list of values. Defaults to numbers.

Properties: .alpha, .alphacs, .alnum, .alnumcs, .nick.

If a single parameter is used, it is treated as a space-delimited list of values.

If two or more parameters are used, each is treated as a separate value.

$not(A)
Returns the binary not value of A.

$or(A,B)
Returns A binary or B.

$ord(N)
Appends st, nd, rd, th as appropriate to the number N.

$pi
Returns the value of the mathematical constant pi to 20 decimal places.

$pos(text,string,N)
Returns a number indicating the position of the Nth occurrence of string in text.

$pos(hello there,e,1)  returns 2
$pos(hello there,e,2)  returns 9
$pos(hello there,a,1)  returns $null

If N is zero, it returns the number of times string appears in text.

Note: You can use $poscs() for a case-sensitive version.

$powmod(B,E,M), $modinv(B,M)
Returns the modular exponentiation, and inverse, of the base, exponent, and modulus.



129

 

$qt(text)
$noqt(text)
Add/remove outer enclosing quotes around text.

$rand(v1,v2)
This works in two ways. If you supply it with numbers for v1 and v2, it returns a random
number between v1 and v2. If you supply it with letters, it returns a random letter
between letters v1 and v2.

$rand(a,z)   returns a letter in the range a,b,c,...,z
$rand(A,Z)  returns a letter in the range A,B,C,...,Z
$rand(0,N)  returns a number in the range 0,1,2,...,N

Note: You can use $rands() for a cryptographically secure random number.

$remove(string,substring,...)
Removes any occurrence of substring in string.

$remove(abcdefg,cd)  returns abefg

You can also specify multiple remove parameters:

$remove(abcdefg,a,c,e,g)  returns bdf

Note: You can use $removecs() for a case-sensitive version.

$replace(string,substring,newstring,...)
Replaces any occurrence of substring in string with newstring.

$replace(abcdefg,cd,xyz)  returns abxyzefg

You can also specify multiple replace parameters:

$replace(abcdefg,a,A,b,B,c,C,d,D)  returns ABCDefg

Note: You can use $replacecs() for a case-sensitive version.

$replacex(string,substring,newstring,...)
Replaces any occurrence of substring in string with newstring except for replacements
that have already been made.

Note: You can use $replacexcs() for a case-sensitive version.

$right(text,N)
Returns the N right characters of text.

$right(othello,5)  returns hello

If N is a negative value, it returns all but N characters.

$round(N,D)
Returns the specified floating point number rounded to the Dth decimal digit.
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$round(3.14159,2)  returns 3.14

The D parameter is optional.

$sin(N), $sinh(N), $asin(N)
Return the sine, hyperbolic sine, and arcsine of N.

Properties: deg

$sqrt(N)
Returns the square root of N.

$str(text,N)
Returns text repeated N times.

$str(ho,3)  returns hohoho

$strip(text,buriecmo)
Returns text with bold, underline, reverse, italic, strikethrough, and color control codes
stripped out.

The second parameter is optional, if used, it strips only the specified types of characters.

The m applies the strip settings in the Messages dialog, and the o applies the "only if..."
settings in the messages dialog.

$stripped
Returns the number of control codes that were stripped from an incoming message, if
any. This can be used in any script event that triggers when a message is received from
a user.

$tan(N), $tanh(N), $atan(N), $atan2(N,M)
Return the tangent, hyperbolic tangent, and arctangent of N, and the arctangent of N/M.

Properties: deg

$upper(text)
Returns text in uppercase.

$upper(hello)  returns HELLO

$utfencode/$utfdecode(text)
Returns text UTF-8 encoded or decoded.

$wrap(text, font, size, width, biptw, N)
Returns Nth line in text wrapped to the specified width in pixels.

Where biptw set the options for bold, italic, process control codes, process tabs, and use
word wrap. Each of these can be followed by an N value of zero or one to indicate
whether they are disabled or enabled respectively.

You can specify 0 for N to return the total number of wrapped lines.
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$xor(A,B)
Returns A binary xor B.

10.5.4

Time and Date Identifiers

$asctime(N,format)
Returns the time and date in text format associated with the $ctime time value.

$asctime(793947600) returns the default text format for this time value
$asctime(hh:nn:ss) returns the current time in this format
$asctime(793947600,dd/mm/yy) returns the date for this time value

The identifiers $time(), $date(), and $gmt() can also be used with the format
specification below.

The format parameter is optional, if it is not provided, a default format is used. The
format can be a combination of the following items:

Year

Month

Day

Hours

Minutes

Seconds

AM/PM

Ordinal
Timezone

yy
yyyy
m
mm
mmm
mmmm
d
dd
ddd
dddd
h
hh
H
HH
n
nn
s
ss
t
tt
T
TT
oo
z
zz
zzz

99
1999
1
01
Jan
January
1
01
Mon
Monday
5
05
13
13
1
01
1
01
a/p
am/pm
A/P
AM/PM
st/nd/rd/th
+0
+0000
+0000 GMT

Note: You can specify both the N and format parameters, or only one or the other.

$ctime
Returns total number of seconds elapsed since 00:00:00 GMT, January 1, 1970 based on
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your system time.

$ctime(text)
Returns the number of seconds elapsed since 00:00:00 GMT, January 1, 1970 based on
the date that you specify.

$ctime(January 1 1970 00:00:00)
$ctime(3rd August 1987 3:46pm)
$ctime(21/4/72 1:30:37)
$ctime(Wed 1998-3-27 21:16)

$ctimer
Returns name of /timer that triggered the current script.

$date
Returns the current date in day/month/year format.

For the date in US format you can use $adate.

$day
Returns the name of the current day ie. Monday, Tuesday, etc.

$daylight
Returns seconds offset if daylight savings is in effect, and 0 if not.

$duration(seconds,N)
Returns the specified number of seconds in a week/day/hour/minute/second format.

The N parameter is optional. If N = 2, the result does not include the seconds value. If N
= 3, the result is in hh:nn:ss format.

Note: This identifier can also take its own output and change it back into seconds.

$fulldate
Returns the current date in the format: Wed Jun 26 21:41:02 1996

$gmt
Returns the current GMT time value in $ctime format.

$idle
Returns your current idle time (same time as that returned by a ctcp finger).

$logstamp
Returns the current time based on the logging timestamp format as defined in the 
logging dialog.

$logstampfmt
Returns the logging timestamp format as defined in the logging dialog.

$ltimer
Returns the timer id of the last timer that was started by the /timer command.

$online / $onlineserver / $onlinetotal
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Returns the number of seconds elapsed in the Online Timer dialog.

$ticks
Returns the number of ticks since your operating system was first started.

$ticksqpc
Returns the number of ticks since your operating system was first started using a high
resolution tick counter.

$time
Returns the current time in hour:minute:second format.

$timer(N/name)
Returns the timer id of the Nth timer in the timers list. You can also specify a timer
name instead of a number. This identifier works in conjunction with the /timer
command.

Properties: com, time, reps, delay, type, secs, mmt, anysc, wid, cid, hwnd, pause,
name

$timer(0) returns the number of active timers
$timer(1) returns the timer id of the 1st timer in the list
$timer(1).com returns the command for the 1st timer in the list
$timer(3).type returns online/offline status for the 3rd timer in the list
$timer(3).secs returns number of seconds left before timer is triggered
$timer(3).mmt returns $true if timer is a multimedia timer
$timer(3).anysc returns $true if the /timer -i switch was specified

Note: The name property treats the specified parameter as a timer name (in case the
name is a number) and returns the timer N position.

$timestamp
Returns the current time based on the event timestamp format as defined in the 
message dialog.

$timestampfmt
Returns the event timestamp format as defined in the message dialog.

$timezone
This returns your current timezone setting in seconds.

$uptime(mirc | server | system, N)
Returns uptime in milliseconds for specified item.

N is optional, N = 1 returns same format as $duration(), N = 2 returns same format as
$duration() but without seconds, and N = 3 returns seconds instead of milliseconds.

10.5.5

Token Identifiers

$addtok(text,token,C)
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Adds a token to the end of text but only if it is not already in text.

$addtok(a.b.c,d,46) returns a.b.c.d
$addtok(a.b.c.d,c,46) returns a.b.c.d

The C parameter is the ascii value of the character separating the tokens.

Note: $addtokcs() is the case-sensitive version.

$deltok(text,N-N2,C)
Deletes the Nth token from text.

$deltok(a.b.c.d,3,46)returns a.b.d
$deltok(a.b.c.d,2-3,46) returns a.d

You can specify a negative value for N.

$findtok(text,token,N,C)
Returns the position of the Nth matching token in text.

$findtok(a.b.c.d,c,1,46) returns 3
$findtok(a.b.c.d,e,1,46) returns $null

If you specify zero for N, it returns the total number of matching tokens.

Note: $findtokcs() is the case-sensitive version.

$gettok(text,N,C)
Returns the Nth token in text.

$gettok(a.b.c.d.e,3,46) returns c
$gettok(a.b.c.d.e,9,46) returns $null

You can also specify a range of tokens:

$gettok(a.b.c.d.e,2-,46) returns 2nd token onwards b.c.d.e
$gettok(a.b.c.d.e,2-4,46) returns tokens 2 through 4 b.c.d

You can specify a negative value for N.

$instok(text,token,N,C)
Inserts token into the Nth position in text, even if it already exists in text.

$instok(a.b.d,c,3,46) returns a.b.c.d
$instok(a.b.d,c,9,46) returns a.b.d.c

You can specify a negative value for N.

$istok(text,token,C)
Returns $true if token exists, otherwise returns $false.

Note: $istokcs() is the case-sensitive version.
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$matchtok(tokens,string,N,C)
Returns tokens that contain the specified string.

$matchtok(one two three, e, 0, 32) returns 2
$matchtok(one two three, e, 2, 32) returns three

If you specify zero for N, it returns the total number of matching tokens.

Note: $matchtokcs() is the case-sensitive version.

$numtok(text,C)
Returns number of tokens in text.

$puttok(text,token,N,C)
Overwrites the Nth token in text with a new token.

$puttok(a.b.c.d,e,2,46) returns a.e.c.d

You can specify a negative value for N.

$remtok(text,token,N,C)
Removes the Nth matching token from text. If N = 0, applies to all matching items.

$remtok(a.b.c.d,b,1,46) returns a.c.d
$remtok(a.b.c.d,e,1,46) returns a.b.c.d
$remtok(a.c.c.d,c,1,46) returns a.c.d

Note: $remtokcs() is the case-sensitive version.

$reptok(text,token,new,N,C)
Replaces the Nth matching token in text with a new token. If N = 0, applies to all
matching items.

$reptok(a.b.c.d,b,e,1,46) returns a.e.c.d
$reptok(a.b.c.d,f,e,1,46) returns a.b.c.d
$reptok(a.b.a.c,a,e,2,46) returns a.b.e.c

Note: $reptokcs() is the case-sensitive version.

$sorttok(text,C,ncra)
Sorts the tokens in text.

$sorttok(e.d.c.b.a,46) returns a.b.c.d.e
$sorttok(1.3.5.2.4,46,nr) returns 5.4.3.2.1

The default is an alphabetic sort, however you can specify n = numeric sort, c = channel
nick prefix sort, r = reverse sort, a = alphanumeric sort.

Note: $sorttokcs() is the case-sensitive version.

$wildtok(tokens,wildstring,N,C)
Returns the Nth token that matches the wildcard string.
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$wildtok(one two three, t*, 0, 32) returns 2
$wildtok(one two three, t*e, 1, 32) returns three

If you specify zero for N, it returns the total number of matching tokens.

Note: $wildtokcs() is the case-sensitive version.

10.5.6

Window Identifiers

$active
Returns the full name of the currently active window.

Note: This identifier also has a multi-server counterpart.

$activewid
Returns window id for the currently active window.

$appactive
Returns $true if mIRC is the active application, otherwise it returns $false.

$appstate
Returns the display state of the mIRC window: minimized, maximized, full, normal,
hidden, or tray.

$chan(N/#)
Returns information on channels that you are currently on.

Properties: topic, mode, key, limit, ial, logfile, stamp, status, inwho, wid, cid, hwnd, ibl,
iel, iil, iql, idle

If you specify a number N, the Nth channel name is returned.

$chan(0)        returns the number of channels you are on
$chan(2)        returns the name of the 2nd channel you are on
$chan(2).key  returns the key of the 2nd channel you are on

$chan(4).ial returns $true if Internal Address List contains addresses of all users on this
channel, $false if it does not.

$chan(4).inwho returns $true if you sent a /who #channel to the server to fill the IAL
with addresses from that channel, and the /who is still in progress.

$chan(1).ibl/iel/iil/iql return $true if mIRC has already seen a /mode +b/e/I/q and
has a ban/exception/invite/quiet list for the channel, $false otherwise. If in the process of
retrieving a list, return $inmode. See the $ibl() identifier for more information.

If you specify a channel name, information on that channel is returned but only if you are
on that channel.

$chan(#mIRC).mode  returns the mode of channel #mIRC
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The status property returns the value joining, joined, or kicked.

$chat(N/nick[,N])
Returns the name of the Nth open dcc chat window.

Properties: ip, status, logfile, stamp, wid, cid, hwnd, idle

$chat(0)     returns the total number of open dcc chats
$chat(1)     returns the nickname of the 1st dcc chat window
$chat(2).ip  returns the ip address of the 2nd open dcc chat window

If you specify a nick and N, it will return info on the Nth window for that nick.

$compact
Returns the normal/compact status of the main mIRC window.

$dqwindow
Returns the state of the single message window. When used in on TEXT/ACTION events,
it also returns opening/writing/written states.

echo State: $iif($dqwindow & 1,enabled,not enabled)
echo State: $iif($dqwindow & 2,open,not open)
echo State: $iif($dqwindow & 4,opening,not opening)
echo State: $iif($dqwindow & 8,writing,not writing)
echo State: $iif($dqwindow & 16,written,not written)

$fserve(N/nick,[N])
Returns the name of the Nth open fileserver window.

Properties: ip, status, cd

$fserve(0)       returns the total number of open fserves
$fserve(1)       returns the nickname of the 1st fserve
$fserve(1).cd  returns the current directory of the 1st fserve

If you specify a nick and N, it will return info on the Nth window for that nick.

$fullscreen
Returns 1 if an application is currently running in full screen mode, 0 if not. This applies
to both game and non-game applications.

$get(N/nick,[N])
Returns the nickname and filename of the Nth open dcc get window.

Properties: ip, status, file, path, size, rcvd, cps, pc, secs, done, resume, wid, cid, hwnd,
idle

$get(0)         returns the total number of open dcc gets
$get(2)         returns the nickname of the 2nd dcc get
$get(2).rcvd  returns the number of bytes received for the 2nd dcc get
$get(2).cps   returns the character per second rate for the 2nd dcc get
$get(3).pc     returns the percent complete of transfer for the 3rd dcc get
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$get(1).secs  returns the number seconds connection has been open
$get(1).done  returns $true if transfer was successful, $false otherwise
$get(1).resume returns resume position if file was resumed

If you specify a nick and N, it will return info on the Nth window for that nick.

$get(1).status returns "sent" and "failed" if a transfer has been sent successfully or
failed.

$lactive
Returns full window name of the last active window.

$lactivewid
Returns window id for the last active window.

$query(N/nick)
Returns the nickname of the Nth open query window.

Properties: addr, logfile, stamp, wid, cid, hwnd, idle

$query(0)  returns the total number of open query windows
$query(2)  returns the name of the 2nd open query window

$query(N).addr  returns the address of the Nth query, however note that this address is
not available until after the user has sent you a message, and that this address might
not be correct.

$send(N/nick[,N])
Returns the nickname and filename of the Nth open dcc send window.

Properties: ip, status, file, path, size, sent, lra, cps, pc, secs, done, resume, wid, cid,
hwnd, idle

$send(0)            returns the total number of open dcc sends
$send(2)            returns the nickname of the 2nd dcc send
$send(2).sent     returns the number of bytes sent for the 2nd dcc send
$send(2).lra       returns the last received ack for the 2nd dcc send
$send(3).pc       returns the percent complete of transfer for the 3rd dcc send
$send(3).status  returns active, inactive, or waiting for the 3rd dcc send
$send(1).secs    returns the number seconds connection has been open
$send(1).done    returns $true if transfer was successful, $false otherwise
$send(1).resume returns resume position if file was resumed

If you specify a nick and N, it will return info on the Nth window for that nick.

$wid
Returns window id for current script.

10.5.7

Other Identifiers
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$+(n1,...,nN)
Combines all of the specified parameters, the same as using $+ in between each item.

$?*!="message"
Prompts the user for input and returns the result.

//echo $?="What is your name?"

If the user enters their name in the editbox and presses the OK button, $? will return
whatever the user entered. If the user clicks on the Cancel button, $? returns nothing.

//echo $?*="What is your password?"

In this case the $?* makes any text that the user types into the editbox appear as *****
characters to prevent anyone seeing what is being entered.

//echo $?!="Shall I continue?"

In this case, a Yes/No dialog pops up. If the user clicks on Yes, $true is returned,
otherwise $false is returned.

The input dialog is extended vertically to display the whole message if it is very long. You
can also make text appear on different lines by using the $crlf identifier to separate the
lines, eg.

//echo $?="This is on the first line. $crlf $+ And this is on the 2nd line."

Note: This identifier cannot be used in a script event. One way around this is to use a
/timer to initiate an input request after the script ends.

$ansi2mirc(text)
Returns text with the ANSI codes converted into mIRC color codes.

$away
Returns the value $true or $false depending on whether you are marked as away or
not.

You can also use $awaymsg and $awaytime to return your current away settings.

$caller
Returns the type of feature that directly called the current command or identifier.

The type can be: activex, command, dde, dll, dragdrop, editbox, event, funckey,
identifier, menu, mouse, play, sendmsg, tabcomp, timer, or other.

$cb
Returns the clipboard contents.

$cb(N,u,%var|&binvar)
Returns $crlf delimited lines from text currently in the clipboard.

if N is -1, stores entire clipboard.
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If the u parameter is specified, returns UTF-8 encoded text.

The %var|&binvar parameters are optional. If specified, results are stored in them and
the identifier returns the length of the text.

Properties: len

$cb(0) returns the number of lines in the clipboard
$cb(0).len return the total length of all lines in the clipboard
$cb(1) returns line 1 from the clipboard
$cb(1).len returns the length of line 1

$chantypes
mIRC supports numeric 005 token CHANTYPES, and can handle a dynamic set of channel
prefixes. $chantypes returns the list of channel prefixes which can be joined. When not
connected to a server, mIRC uses a default $chantypes value of CHANTYPES=#&.

$chanmodes
mIRC supports numeric 005 token CHANMODES, and can handle a dynamic set of
channel modes. The $chanmodes identifier returns the list of supported channel modes.
When not connected to a server, mIRC uses a default $chanmodes value of
CHANMODES=bIe,k,l.

$cmdbox
Returns $true if a command or script was initiated via the command editbox in a channel
window.

$cmdline
Returns the command line that was passed to mIRC when it was first run.

$codepage(N)
Returns the list of available codepages on your system.

Properties: name, desc, id

$color(name/N)
Returns the Nth color index of the specified color name eg. $color(action text). If you do
not specify the full name the first partial match is returned eg. $color(action)

If you specify an N value, returns the RGB value for the Nth color box.

Properties: dd

$color(action).dd returns number in double-digit format

$comchar
Returns the command prefix character.

$cr
Returns the carriage return character, the same as $chr(13).

$creq
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Returns current /creq settings in the DCC Options chat section dialog.

$crlf
Returns a carriagereturn/linefeed combination.

$dccignore
Returns $true if ignore types is turned on in the DCC Folders dialog, otherwise returns
$false.

$dccignore(N/filename)
Returns the Nth item in the dcc ignore types editbox in the DCC Folders dialog.

If n is zero, returns number of items in list, otherwise returns Nth item in list. If a
filename is specified, returns $true if it matches item in list, otherwise $false.

$dccport
Returns the port being used by the DCC Server.

$dll(name.dll,procname,data)
Returns the value resulting from a call to a DLL designed to work with mIRC.

$ebeeps
Returns $true if sounds are enabled in the Sounds dialog.

$editbox(window,N)
Returns the text in the editbox of the specified window. If N = 1, returns the text in the
second editbox in a channel window, if it is open.

Properties: selstart, selend

$emailaddr
Returns the email address specified in the Connect dialog.

$eval(text,N)
Evaluates the contents of text N times. If N is not specified, the default is N = 1. If N is
zero, text is not evaluated.

This allows you to recursively evaluate identifiers and variables in a line of text.

$eventparms
Returns the event-specific parameters passed to an executed command in a script.

$envvar(name|N)
Returns environment variables. If N is zero, returns total number of environment
variables.

Properties: name, value

$exiting
Returns 0, or 1 if mIRC is in the process of exiting, and 2 if mIRC is exiting and
restarting.

$font(N/Name)
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Returns the list of available fonts on the system.

Properties: size, pitch, type

$fromeditbox
Returns $true/$false if command or identifier was called directly from an editbox.

$fullname
Returns the full name specified in the Connect dialog.

$hash(text,B)
Returns a hash number based on text where B is the number of bits to use when
calculating the hash number.

$highlight
Returns $true if highlighting is turned on in the Highlight dialog, otherwise returns
$false.

$highlight(N/text)
Returns the Nth line in the highlight listbox, or if text is specified, returns the properties
for the highlight line that matches text.

Properties: text, color, sound, flash, message, nicks, regex, cs, chans

$hmac(text|&binvar|filename, key, hash, N)
Returns an HMAC (keyed-Hash Message Authentication Code) based on the supplied key
where hash = md5, sha1 (default), sha256, sha384, or sha512, and N = 0 for plain text
(default), 1 for &binvar, 2 for filename.

$host
Returns your Local host name.

$hotp(key, count, hash, digits)
Returns an HOTP (HMAC-based One-Time Password) based on the specified parameters.

The key is required and can be in a hex format of 40/64/128/256 chars, base32 format
of 16/26/32 chars, or plain text. It can also be in a Google Authenticator format ie.
lowercase with spaces.

The hash can be md5, sha1, sha256, sha384, sha512.

The digits can range from 3 to 10.

The count is required, and hash and digits are optional and default to sha1 and 6.

$iif(C,T,F)
Returns T or F depending on whether the evaluation of the Conditional C is true or false.

$iif(1 == 2, yes, no)  returns "no"

$iif() returns F if the conditional returns zero, $false, or $null. For any other value $iif()
returns T.
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If you do not specify the F parameter, $iif returns a T value if the condition is true, and
returns nothing if it is false.

$iif(1 == 2, yes)  returns nothing

You can find out more about conditionals in the if-then-else section.

$ifmatch
Returns the first parameter of matching if-then-else comparison.

In the case of this comparison:

if (text isin sometext) { ... }

$ifmatch returns "text"

$ignore(N/address)
Returns the Nth address in the ignore list.

Properties: type, secs

$ignore(0) returns the total number of addresses in the ignore list
$ignore(1) returns the 1st address in the ignore list
$ignore(2).type returns the ignore flags for the 2nd address in the ignore list
$ignore(2).secs returns number of seconds until ignore is removed if /ignore -uN
was used

Note: If you specify an address, the first matching address in the ignore list is returned.

$inpaste
Returns $true if a user typed Control+V or Shift+Insert to paste text into an editbox,
mainly useful when processing an on INPUT event.

$input(prompt,options,window,title,text)
Prompts the user for input and returns the result.

The input dialog is extended vertically to display the prompt message if it is very long.
You can also make text in the prompt message appear on different lines by using the
$crlf identifier to separate lines.

Options can be a combination of the following:

e - show input editbox
p - show input password editbox
o - ok button
y - yes no buttons
n - yes no cancel buttons
r - retry cancel buttons
v - return $ok, $yes, $no, $cancel for buttons
g - right-align buttons
b - disables buttons for a second when dialog is displayed
f - return $no/$cancel for edit/combo boxes if no/cancel is pressed
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By default, buttons return $true or $null, same as $?. If there is an input editbox, the
ok/yes buttons always return the contents of the editbox.

iqwhtc - show the info, question, warning, halt, start, and bin icons respectively.
d - play system sound associated with icon.

s - indicates that window name has been specified
a - activate dialog
u - use current active window as parent window
x - opens the dialog on the desktop

kN - an N second timeout value. On timing out, $timeout is returned if v is specified, no
value if e is specified, and $false otherwise.

m - indicates that multiple text parameters have been specified. They will be displayed in
a combobox. The first text item is the default item (a reference to an item in the list), the
rest are the items in the list.

window - name of the window to be used as parent window.

title - the titlebar text.

text - the default text placed in the input editbox.

The options, window, title, and text are optional parameters.

Note: This identifier cannot be used in a script event. One way around this is to use a
/timer to initiate an input request after the script ends.

$ip
Returns your IP address.

$isadmin
Returns $true if mIRC is running in an elevated, administrator state, otherwise $false.

$isalias(name,[N])
Returns $true if the specified name is an alias command that exists in your aliases or
scripts.

Properties: fname, alias, ftype

$isalias(join) returns $true if you have an alias for /join
$isalias(join).fname returns the filename in which the alias exists
$isalias(join).alias returns the alias definition for /join
$isalias(join).ftype returns alias or remote

Note: The N parameter is optional and returns the Nth line in a multi-line alias when
used with the .alias property.

$isid
Returns $true if an alias was called as an identifier, otherwise $false.

$lf
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Returns the linefeed character, the same as $chr(10).

$lock(item/#/N)
Returns $true or $false for the lock settings on items in the Lock dialog.

Properties: startup, send, get, chat, query, fserve, channels, tray, tips

You can also use $lock(N) where N returns the Nth channel in the limit channels listbox,
or you can specify a channel name instead of N.

$locked
Returns $true if mIRC is currently locked.

$maxlens, $maxlenm, $maxlenl
Return the maximum lengths for small, medium, and large strings used in mIRC.

Note: Although it is possible in some situations, eg. when assigning values to variables,
to store slightly longer strings, the values returned by the above identifiers should be
treated as maximums.

$md5(text|&binvar|filename,[N])
Returns md5 hash value for the specified data, where N = 0 for plain text (default), 1 for
&binvar, 2 for filename.

$mircpid
Returns mIRC's process id.

$modespl
mIRC supports numeric 005 token MODES.

$modespl returns the maximum number of parameters allowed per /mode, eg. if
$modespl is equal to 5, you can use /mode +ooooo to set five modes at a time.

$msgstamp
Returns UTC timestamp for a server message that has an IRCv3 @time prefix tag, such
as when CAP server-time or znc.in/server-time[-iso] are enabled on a server.

$msgtags
mIRC removes @ prefixed tags (IRCv3 message tags) from incoming server messages
and stores them in the $msgtags identifier.

$msgtags(tag|N)
Returns the individual tags listed in the $msgtags identifier, where N = 0 returns number
of tags.

Properties: tag, key

$network
Returns the name of the IRC network you are currently connected to.

Note: It may not be possible to get this information if a network does not provide it.

$os
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Returns the version number of the operating system. The reply can be XP, 2003,
2003R2, Vista, 2008, 7, 2008R2, 8, 2012, 8.1, 2012R2, 10, 11, 2016, 2019, or 2022.

Properties: major, minor, build, platform, type, spmajor, spminor, suite

$parms
Returns an untokenized $1- for events and other command/identifier calls.

$passivedcc
Returns $true if passive dcc is enabled in the DCC Options dialog.

$port
Returns the port number of the server to which you are currently connected.

$portable
Returns $true or $false depending on whether mIRC was run as portable.

$prefix
mIRC supports numeric 005 token PREFIX, and can handle a dynamic set of channel
nickname prefixes.

$prefix returns the list of channel nickname prefixes ie. op, halfop, voice, etc. that are
supported on a server.

When not connected to a server, mIRC uses a default $prefix value of
PREFIX=(ohv)@%+.

$result
Stores the number value returned to a calling routine by the /return command.

$server
Returns the name of the server to which you are currently connected.

If you are not currently connected to a server, it returns $null.

$server(N/address,[group])
Returns the address of the Nth server in your irc servers list.

Properties: desc, port, group, pass, method, methodpass, keytype, key, itype, nick,
anick, user, email, encoding

$server(0) returns the total number of servers in the servers list
$server(2) returns the address of the 2nd server
$server(2).desc returns the description of the 2nd server
$server(3).port returns the port(s) of the 3rd server

If you specify an irc server address and it is in your servers list, returns its associated
info.

If you specify the group parameter, returns only servers in that group. If N = 0, returns
total servers in group.

Note: If N=-1 is used, it returns values for the active status window.
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$serverip
Returns server IP address.

$servertarget
Returns the address specified in the /server command whether you are connected to the
server or not.

$sha1(text|&binvar|filename,[N])
Returns sha1 hash value for the specified data, where N = 0 for plain text (default), 1 for
&binvar, 2 for filename.

Note: You can also use $sha256(), $sha384(), and $sha512() to generate the
corresponding hashes using the above  format.

$show
Returns $false if a command is prefixed with a . to make it quiet, otherwise returns
$true.

$sreq
Returns current /sreq settings in the DCC Options send section dialog.

$ssl
Returns $true if the current server connection is using SSL.

$sslhash(method, type)
Returns the client or server certificate fingerprint, where method can be md5, sha1,
sha256, sha512, ecdsa, and type can be p for the client certificate and s for the server
certificate.

Properties: babble, colons

$sslcertvalid
Returns $true if the SSL certificate is valid for the current SSL connection.

$sslready
Returns $true if mIRC is ready to make secure connections using SSL.

$sslversion, $ssldll, $ssllibdll
Return information regarding the version and file locations of the SSL library being used.

$starting
Returns 0, or 1 if mIRC is in the process of starting up.

$status
Returns server connection status.

Note: This returns closing during the on DISCONNECT event if the status window being
closed is the cause of the disconnection.

$titlebar
Returns the text in the mIRC titlebar, set by the /titlebar command.
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$totp(key, time, hash, digits, timestep)
Returns a TOTP (Time-based One-time Password) based on the specified parameters.

The key is required and can be in a hex format of 40/64/128/256 chars, base32 format
of 16/26/32 chars, or plain text. It can also be in a Google Authenticator format ie.
lowercase with spaces.

The time is a unix timestamp, such as that returned by $ctime.

The hash can be md5, sha1, sha256, sha384, sha512.

The digits can range from 3 to 10.

The timestep can range from 1 second to 48 hours.

The time, hash, digits, and timestep are optional and default to $ctime, sha1, 6, and 30.

$unsafe(text)
This identifier is designed to be used with, for example, external user input in commands
that may evaluate text later on, such as /timer commands. It delays evaluation of text
for one level of evaluation.

$url
Returns the currently active URL in your web browser.

$url(N)
Returns the Nth address in your URL list.

Properties: desc, group

$url(0) returns the total number of items in the URL list
$url(2) returns the address of the 2nd item in the list
$url(2).desc returns the description of the 2nd item in the list
$url(3).group returns the group of the 3rd item in the list

$urlget(url,hgpuadfbrtikce,target,alias,headers,body)
Downloads content from specified http/https address. Returns id number. Calls alias with
id number as parameter when transfer completes.

url = http/https://user:pass@address:port/file?parameters

options =
  hgpuad = head, get, post, put, patch, or delete
  fb = file or &binvar
  r = resume
  t = use .part file
  i = ignore SSL errors
  k = prevent redirects
  c = cancel
  e = save errors, such as 404 replies, to file or &binvar

target = file or &binvar
alias = called on completion
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headers = &binvar
body = &binvar

If the call fails, for any reason, it returns an id of zero.

$urlget(N/id) can be used with properties: url, redirect, method, type, target, alias, id,
state, size, resume, rcvd, time, reply

$usermode
Returns your current usermode on the irc server.

$version
Returns the version of mIRC that is being used.

10.6

Agents

mIRC supports Microsoft Agent either through scripting or through the Agents section in
the options dialog. An agent is an animated character that can speak text and perform
actions.

You can find links to related websites and resources, as well as download information, on
the mIRC website.

Agent commands

The following commands allow you to manipulate agents, to make them speak, play
animations, and more.

/gload <-h> <name> <filename | N | default>
You must use /gload to load an agent before you can use it.

The name you give an agent is the name you will use to refer to it in all of the other
commands and identifiers.

You can load an agent either by specifying its filename, if you know it, or by loading
the Nth installed agent on your system, or by specifying default, which will load the
default agent for your system.

If you specify the -h switch, mIRC will hide the agent whenever mIRC is minimized. You
can also use the -h switch with the other agent commands to prevent them from popping
the agent when mIRC is minimized and has the -h setting.

Note: You cannot load more than one of the same agent. You can however load as
many different agents as you want.

/gunload <name>
This unloads the specified agent. The name is the name you gave your agent when you
loaded it with /gload, not the filename of the agent.

/gshow <name> [x y]

http://www.mirc.com
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This shows an agent in its most recent or default position, or at the specified x y position.

/ghide <name>
This hides an agent.

/gmove <name> <x> <y> [speed]
This moves an agent to the <x> and <y> position on your screen. If a speed is not
specified, it uses a default speed. If you specify a speed of 0, it moves instantly to the
new position.

/gsize <name> <w> <h>
This resizes an agent to the specified width and height.

/gtalk -kwlu <name> <text | <wavefile | text>>
This makes an agent speak the specified text.

If you want the agent to think the text in a balloon without speaking it, you can use the
-k switch.

If you want the agent to play a wave sound file, you can use the -w switch, and specify
a wave filename. You should also specify text after the filename, the agent will show it
in a balloon while playing the wave sound.

The -l switch applies the lexicon settings in the lexicon dialog to the text.

The -u switch applies the speech settings in the speech options dialog.

/gplay <name> <anim | N> [timeout]
This makes an agent play one of its animations.

You can either specify the name anim of an animation, if you know it, or ask it to play
the Nth animation.

Some animations are looping animations, which repeat continuously, and prevent an
agent from doing anything else until you /gstop the agent. The [timeout] value allows
you to specify a timeout for an animation after which it is automatically stopped, and
the agent will then perform any remaining queued requests. If you do not specify a
timeout value, the default is 5 seconds. If no play or talk requests are pending, the
looping animation continues beyond the timeout until there are.

/gpoint <name> <x y>
This makes an agent point towards the specified <x> <y> screen position.

/gstop -c <name> [talk play]
This stops an agent from doing what it is currently doing, and removes all queued
requests for the agent.

If you wish to only stop the current action, you can use the -c switch.

If you wish to stop only talk or only play requests, you can specify talk or play.

/gopts -bieqnh <name> <on off size pace hide nosize nopace nohide langid>
This sets various options relating to how the agent behaves.
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The -b switch turns balloons on or off. You can also specify size to make the balloons fit
the text being spoken, pace to display text word by word as it is being spoken, and hide
to hide the balloons when no text is being spoken.

The -i switch turns idle effects on or off.

The -e switch turns sound effects on or off.

The -n switch allows you to set a language id, where langid is the hex id value.

The -h switch turns the auto-hide feature on or off (see /gload for more info).

/gqreq <on | off>
By default mIRC queues all requests and plays them one after the other to ensure that
even if you use multiple agents at the same time, all messages will be heard, and all
agents will act in the order that you requested. You can turn queuing on/off on the fly.

Agent Identifiers

The following identifiers allow you to access information about an agent that is currently
loaded.

$agentver
Returns the version of the Agent installed on your system, 0 if not installed.

$agentstat
Returns 1 if Agent is ready, or 0 if busy or speaking.

$agentname
Returns the name of the agent in an on AGENT event.

$agent(N).char
Returns the filename of the Nth available agent installed on your system.

If you specify 0, returns total number of installed agents.

$agent(name)
Returns information about a currently loaded agent.

Properties: name, fname, visible, x, y, w, h, ow, oh, speed, pitch, idle, effects, active,
langid, balloon, hide

name the name you gave to this agent
fname the filename of the agent or default
visible returns $true or $false
x,y,w,h left/top position, width/height.
ow, oh original width/height
speed speaking speed
pitch speaking pitch
idle if idle behaviour is on or off
effects if sound effects are on or off
active if this agent is active/topmost
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langid language id of system
balloon current setting: on off size pace hide
hide returns auto-hide setting

$agent(name,N)
Returns information on animations and queued lines for an agent.

Properties: anim, line

anim returns the names of the animations available for this agent.
If you specify N, returns the name of the Nth animation.
If you specify 0, returns the total number of animations.

line returns the list of lines currently queued for talking for this character.
If you specify N, returns the Nth line.
If you specify 0, returns total number queued lines.

Tags in spoken text
You can use tags in <text> in /gtalk which may be recognized by the text-to-speech
engine, these are a few:

\spd=n\ set speed of spoken text
\pit=n\ set pitch of spoken text
\vol=n\ set volume of spoken text
\chr="text"\ where text is normal, monotone, or whisper
\ctx="text"\ where text is address, email, unknown
\emp\ emphasize next word
\pau=n\ pause speech nnn milliseconds
\rst\ reset settings to default

$notags(text)
Removes the above tags from text. Only tags that are valid and correctly written as
above are removed.

10.7

Binary Files

mIRC allows you to read and write binary files, and to modify binary variables, by using
the following commands and identifiers.

/bread [-ta] <filename> <S> <N> <&binvar>
This reads N bytes starting at the Sth byte position in the file and stores the result in the
binary variable &binvar.

The -t switch reads data up to the next CR/LF.

The -a switch disables UTF-8 encoding of characters in the range 0-255, as long as the
line contains no characters > 255.

Note: the Sth byte position starts at zero.
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/bwrite [-tac] <filename> <S> [N] <text|%var|&binvar>
This writes N bytes from the specified text, %var, or &binvar, to the file starting a the
Sth byte position. Any existing information at this position in the file is overwritten. If S
is -1, the bytes are appended to the end of the file. If N is -1, all of the specified data is
written to the file.

The -t switch interprets the data value as plain text and does not evaluate &binvar
variables.

The -a switch disables UTF-8 encoding of characters in the range 0-255, as long as the
line contains no characters > 255.

The -c switch chops the file at the end of the copied bytes.

Note: the Sth byte position starts at zero.

Note: if specifying a %var, it should be passed as % $+ var, to prevent double
evaluation, as /bwrite reads directly from the variable in order to preserve spaces.

/bset [-tacz] <&binvar> <N> <asciivalue> [asciivalue ... asciivalue]
This sets the Nth byte in binary variable &binvar to the specified ascii value. If N is -1,
the values are appended.

If you try to /bset a variable that does not exist, it is created and zero filled up to N
bytes. If &binvar exists and you specify an N position beyond its current size, it is
extended to N bytes.

If you specify multiple asciivalues, they are copied to successive positions after byte
position N.

The -t switch indicates that /bset should treat the values as plain text and copy them
directly into &binvar.

The -a switch disables UTF-8 encoding of characters in the range 0-255, as long as the
line contains no characters > 255.

The -c switch chops &binvar at the end of the copied bytes.

The -z switch creates an empty &binvar or zeros an existing one.

/bunset <&binvar> [&binvar ... &binvar]
This unsets the specified list of &binvars.

/bcopy [-zc] <&binvar> <N> <&binvar> <S> <M>
This copies M bytes from position S in the second &binvar to the first &binvar at position
N. This can also be used to copy overlapping parts of a &binvar to itself. If N = -1, bytes
are appended to the destination &binvar.

If you specify the -z switch, the bytes in the second &binvar that were copied are
zero-filled after the copy.

If you specify the -c switch, the first &binvar is chopped at the end of the copied bytes.
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Note: If M is -1, all of the bytes from position S onwards are copied.

/breplace <&binvar> <oldvalue> <newvalue> [oldvalue newvalue...]
This replaces all matching ascii values in &binvar with new values.

/btrunc <filename> <bytes>
This truncates/extends a file to the specified length.

$bvar(&binvar,N,M)
Returns M ascii values starting from the Nth byte

Properties: text, word, nword, long, nlong

$bvar(&v,0) returns the length of the binary variable
$bvar(&v,1) returns ascii value at position N
$bvar(&v,5,3)returns ascii values from 5 to 8
$bvar(&v,5,3).text returns plain text from 5 to 8 up to the first zero character

The word, nword, long, and nlong properties return values in host or network byte order.

$bfind(&binvar, N, M, [name])
Searches a &binvar for a matching value, starting from position N. M can be a character
value, ie. 0 to 255, or text.

Properties: text, textcs, regex

$bfind(&test, 1, mirc) finds "mirc" starting from pos 1
$bfind(&test, 5, 32) finds char 32 (a space) from pos 5
$bfind(&test, 1, 87 65 86) finds WAV from pos 1

You can use .text/.textcs to force a case-insensitive/case-sensitive text search if the
search text is a number.

You can use .regex to perform a regex search, where M is a regular expression. The
optional [name] parameter is the $regml() name.

Notes on &binvar binary variables
Binary variables have no size limit, limited only by available memory, and are
automatically destroyed when a script finishes processing.

10.8

COM Objects

mIRC allows you to call COM objects via scripts. You must have experience with COM
objects in order to use this feature.

/comopen name progid
This opens a COM connection to object progid eg. Excel.Application, and assigns the
connection a name.

You should check $comerr after making this call to confirm that the COM connection was



155

 

successful.

/comclose name
This closes the specified COM connection.

/comlist
This lists all open COM connections.

/comreg -u filename
This registers/unregisters a COM DLL with windows.

example {
  comopen name progid

  ; if comopen failed, maybe the DLL that came with the script is not registered
  if ($comerr) {

    ;register the DLL
    comreg test.dll

    ;try to open it again
    comopen name progid

    ; still failed, halt the script
    if ($comerr) halt
  }
}

$comerr
This should be checked after a call to any COM command or identifier. Returns 1 if there
was an error, 0 otherwise.

$com(name,member,method,type1,value1,...,typeN,valueN)
This calls a member of an open COM connection with the specified method and
parameters.

  name   - connection name.

  member - member name.

  method - Combination of the following values added together:
              1 = DISPATCH_METHOD
              2 = DISPATCH_PROPERTYGET
              4 = DISPATCH_PROPERTYPUT
              8 = DISPATCH_PROPERTYPUTREF

  type   - the variable type, can be: i1, i2, i4, ui1, ui2, ui4, int, uint, r4, r8, cy, date,
decimal, bool, bstr, variant, dispatch, unknown, error.

              VB equivalents are: boolean, byte, currency, date, double, integer, long, single,
string, variant.

              To make a variable by reference, use * in the type name, eg. i1*
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              To assign a name to a variable for later reference after a call, append it to the
type, eg. i1* varname

              When using a variant you must also specify the variable type after it, eg.
variant bool.

  value  - the value assigned to the variable type.

  Returns: 1 = ok, 0 = fail.

After you have opened a COM connection or made a call to $com() you can use the
following forms of $com():

$comcall(name,alias,...)
$comcall() uses the same format as $com() apart from the alias. It is multi-threaded so
it will not halt the script and will call the specified alias once the call returns.

Note: If $comcall() fails when calling an object and $com() does not, this means that the
object is not compatible with the threading model of mIRC, so $com() must be used. You
can check the $comerr value in the alias to determine if a $comcall() failed or not.

$com(name/N)
Returns name if connection is open, or name of Nth connection. N = 0 returns number of
open connections.

Properties: progid, dispatch, unknown, result, error, errortext, argerr

progid - object name.

result - the value returned by the COM object member after the call.

error  - error value, if there was an error.

errortext - error description associated with error.

argerr - Nth argument that caused the error, if the error was due to an invalid variable
type.

$com(name/N,varname)
Returns value of the specified variable name.

$comval(name,N,member)
Returns member value for the Nth instantiation of the enumerated collection in name.

Binary Variables
The $com() identifier allows passing parameters in from, and results out to, binary
variables.

To pass parameters in from binary variables, prefix the variable type with & to indicate
the parameter is a binary variable eg. $com(name, member, method, &bstr, &binvar).

To retrieve a result into a binary variable, use $com(name, &binvar).result.
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To store array results into a binary variable, use $comval(name, N, member,
&binvar).result. If the array is a BSTR, it is stored using null bytes as separators.

Note: $com() also allows you to pass/retrieve one dimensional single-byte arrays
from/into binary variables.

Dispatch and Unknown
The two variable types dispatch and unknown allow you to pass dispatch/unknown
pointers as parameters in a $com() call, or retrieve dispatch/unknown pointers from a
$com() call, by reference.

To pass a dispatch/unknown pointer as a parameter in $com(), specify the variable type
as dispatch/unknown, and specify the name of an existing $com() connection as the
value.

To retrieve a dispatch/unknown pointer through a call to $com(), specify a dispatch*
item, with a variable name, as the last parameter in a $com() call, without assigning it a
value. When $com() returns, mIRC will create a new $com() item with that variable
name and assign it the dispatch or unknown pointer. See example script #2 below.

In the case of retrieving an unknown pointer, mIRC will extend it to a dispatch pointer
if it can, allowing you to call it directly via $com().

You can use $com().dispatch or $com().unknown to see if a pointer exists for that
$com() item.

Example Script #1
The following script is a simple example that connects to excel and then retrieves and
sets the visible property.

excel {
  comopen excel Excel.Application

  if ($comerr) {
    echo comopen failed
    halt
  }

  ; check if excel window is visible

  if ($com(excel,Visible,3) == 0) {
    echo $com failed
    goto finish
  }

  echo Visible: $com(excel).result

  ; make excel window visible

  if ($com(excel,Visible,5,i4,1) == 0) {
    echo $com failed
    goto finish
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  }

  ; check visibility again

  if ($com(excel,Visible,3) == 0) {
    echo $com failed
    goto finish
  }

  echo Visible: $com(excel).result

  :finish
  comclose excel
}

Example Script #2
The following script retrieves information about your CPU. It displays debugging
information so you can see whether a call succeeded or not, the value it returned, and
whether a new COM object was created.

cpu {
  comopen Locator WbemScripting.SWbemLocator
  if ($comerr) { echo comopen failed | halt }

  echo com: $com(Locator, ConnectServer, 3, dispatch* Services)
  echo result: $com(Locator).result
  echo com(0): $com(0)

  if ($com(Services)) {
    echo com: $com(Services, Get, 3, string, Win32_Processor.DeviceID='CPU0',
dispatch* More)
    echo result: $com(Services).result
    echo com(0): $com(0)

    if ($com(More)) {
      echo com: $com(More, Name, 3)
      echo result: $com(More).result
      echo com: $com(More, Caption, 3)
      echo result: $com(More).result
      echo com: $com(More, Manufacturer, 3)
      echo result: $com(More).result
      comclose More
    }

    comclose Services
  }

  comclose Locator
}

Example Script #3
The following script retrieves information about your hard drives. It does so by retrieving
all drive instances in an enumerated collection and then accessing member values for
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each instance using the $comval() identifier.

drives {
  comopen Locator WbemScripting.SWbemLocator
  if ($comerr) { echo comopen failed | halt }

  echo Com: $com(Locator,ConnectServer,3, dispatch* Services)
  echo Result: $com(Locator).result
  comclose Locator

  if $com(Services) {
    echo com: $com(Services, InstancesOf,3,string,Win32_LogicalDisk,dispatch*
Instances)
    echo result: $com(Services).result
    comclose Services
  }

  if $com(Instances) {
    echo com: $com(Instances,Count,3)
    var %n = $com(Instances).result
    echo result: %n

    var %m = 1
    while (%m <= %n) {
      echo 4 disk: %m
      echo 3 Com: $comval(Instances, %m, Name)
      echo 3 Com: $comval(Instances, %m, FileSystem)
      echo 3 Com: $comval(Instances, %m, FreeSpace)
      echo 3 Com: $comval(Instances, %m, Description)
      inc %m
    }

    comclose instances
  }
}

10.9

Custom Windows

The /window command, along with a few other related commands listed below, allows
you to create and manipulate custom windows. Its format is:

/window [-abBcCdDe[N]fg[N]hHij[N]k[N]l[N]mMn[N]oprRsSuvw[N]xz] [-tN,..,N]
[+bdeflLnstx] <@name> [x y [w h]] [/command] [popup.txt] [font [size]] [iconfile [N]]

Switches and Parameters
You can specify the following switches and parameters either when first creating a
window or to manipulate an existing window.

The first set of switches:
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a = activate window
b = update horizontal scrollbar width for listbox
B = prevent window from using an internal border
c = close window
C = center window when first created
d = open as desktop window
D = allows a window to be toggled between mdi and desktop
e[N] = use editbox, where 0 = single, 1 = multi, 2 = auto, 3 = default
f = indicates that w h are the required width and height of the text display area as
opposed to the window size
g[N] = sets/removes hilight for a window button, 0 = none, 1 = message color, 2 =
hilight color
h = hide window
H = enables auto-hide for a side-listbox
i = dynamically associate with whatever happens to be the active connection
j[N] = sets buffer size to N lines
k[N] = hides the @ prefix in the window name, 0 = hide prefix, 1 = show prefix
l[N] = listbox, if N is specified then a side-listbox N characters wide is created
m = allow line marker to be used in window
M = chops text at tab stops.
n[N] = minimize window, 2 = minimize without auto-expanding item in treebar
o = if opened on desktop, place ontop
p = creates a picture window
r = restore window
R = reset window position to previously saved position
s = sort the main window, whether text or listbox
S = sort the side-listbox
u = remove ontop setting of a desktop window
v = close window when associated status window is closed
w[N] = where 0 = hide from switchbar/treebar, 1 = show in switchbar, 2 = show in
treebar, 3 = show in both
x = maximize window
z = place window button at end of switchbar

The -t switch used to set the tab positions in a listbox.

tN,...,N = specifies the tab positions in a listbox, if text contains tabs it will be
   spaced out according to these tab settings

Note: If -tN is 0, this enables the leading text to be hidden.

The third set of switches is used to change the appearance of a window.

b = border
d = no border
e = 3d edge
f = dialog frame
l = tool window
L = tool window but window will not appear in taskbar
n = minimize box
s = sizable
t = titlebar
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x = maximize box

Note: Some switches may automatically turn others on/off.

@name window name (must prefix with a @)
x,y,w,h left top width height
popup.txt popup filename, loaded when needed (must be a plain non-ini text file)
/command default command (executed whenever you enter text in an editbox)
font/size font name and size (defaults to status window font)
iconfile/N sets the titlebar icon for a custom window

If you want the custom window to use a menu definition in a remote script, you can
specify the custom window's name as the popup filename instead of an actual popup.txt
filename.

Note: If you specify -1 for any of the x,y,w,h values, a default value is used, unless the
window exists in which case the current value is used.

Commands
The following commands allow you to manipulate the lines in a custom window.

/aline [c] <@name> <text>add line to list
/cline [c] <@name> <N> changes the color of the Nth line to color C
/dline [c] <@name> <N[-N2]> delete Nth line through N2th line
/iline [c] <@name> <N> <text> insert line at Nth line
/rline [c] <@name> <N> <text> replace Nth line
/sline [c] <@name> <N> select Nth line

The c parameter specifies a color number for the line.
The -s switch selects the line that was just added and clears the current selections.
The -a switch selects a line without clearing the current selections.
The -h switch highlights the window's button if it is currently minimized.
The -p switch forces the line of text to be wrapped if it is too long to fit on one line.
The -r switch is used with /cline to reset a nickname color in a channel listbox to the
default color.
The -i switch is used with /aline and /iline to indent a newly added line.
The -n switch is used with /aline and /iline to prevent a line from being added if it exists.
The -m switch is used with /cline when coloring nicknames in a channel nicklist, and
makes mIRC also color the nick in channel messages.
The -l switch applies the command to the side listbox.
The -iN switch indents the line by 2 spaces by default or N spaces if N is specified.

If you are referencing a window which uses a side-listbox, you can specify the -l switch in
the above commands to act on the side-listbox.

/renwin <@oldname> <@newname> [topic]
This allows you to change the name of an existing window to a different one, and an
optional topic can be specified.

Identifiers
The following identifiers return custom window information.

$window(N/@name)



mIRC Help162

 

Returns properties for a window.

Properties: x, y, w, h, cx, cy, dx, dy, dw, dh, bw, bh, mdi, title, state, font, fontsize,
fontbold, fontitalic, fontcs, logfile, stamp, icon, ontop, type, anysc, wid, cid, hwnd,
sbtext, sbcolor, sbstate, tbtext, tbstate, idle, lb, fullscreen

x,y,w,h return the left, top positions, and the width and height of the window
respectively.
cx,cy return the left, top positions of the window relative to the primary monitor.
dx,dy return the left, top positions of the window relative to the desktop.
dw,dh return the width and height of the text display area.
bw,bh return the width and height of the bitmap for a graphic window.
mdi returns $true if the window is mdi, otherwise returns $false
title returns the text in the titlebar of the window
state returns minimized/maximized/hidden/normal
font returns the name of the current font
fontsize returns the size of the current font
fontdialogsize returns the size of the current font in font dialog size
fontbold returns $true if the font is bold, otherwise returns $false
fontitalic returns $true if the font is italic, otherwise returns $false
fontcs returns the character set of the current font
logfile returns name of logfile if one is open for the window
stamp returns timestamp setting
icon returns on/off depending on whether icon is visible
ontop returns ontop status for a window
type returns window type
anysc returns $true if the /window -i switch was specified
wid returns the window id
cid returns the associated connection id
hwnd returns the window handle
sbtext returns the switchbar button text
sbcolor returns the switchbar highlight color
sbstate returns switchbar button state for a window
tbtext returns the treebar button text
tbstate returns treebar button state for a window
idle returns idle state
lb returns 0, 1 or 2 depending on whether window contains no listbox, listbox or
side listbox
fullscreen returns $true/$false

You can also use the format $window(@wildcard,N) which returns the Nth window
matching the wildcard window name.

Note: You can also get the .w and .h properties by specifying: -1 for the width and
height of the screen, -2 for the main mIRC window, and -3 for the MDI window where all
other windows inside mIRC are displayed.

$line(@name,N,T)
Returns the Nth line of text in the specified window. If N is zero, it returns the total
number of lines in the window.

Properties: state, color
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$line(@name,1).state - returns selection state for a line in a listbox.

If you are referencing a window which uses a side-listbox, you can set T to zero to
reference the display area, or set T to one to reference the side-listbox.

$fline(@name,text,N,T,S)
Returns position of the Nth line that matches the specified wildcard text. If N is zero, it
returns the total number of matching lines. If T is 1, it references the listbox, 2 text is a
regular expression, and 3 for both.

The S parameter allows you to specify the search start position and returns the match
position in $flinen.

Properties: text

$sline(@name,N)
Returns the Nth selected line in a listbox (only works in listboxes). If N is zero, it returns
the total number of selected lines in the window.

Properties: ln

$sline(@name,N).ln - returns the line number of the Nth selected line

Examples

/window @test

This would create a window named @test with all of the default settings.

/window -els @clones 10 10 clones.txt

This would create a window with a sorted listbox and an editbox, positioned near the top
left of the mIRC window, and using the popup file clones.txt which would appear
whenever you click the right mouse button in the listbox.

Note: The popup text file must be plain text in a non-ini format using a non-ini
extension.

10.10

DDE

mIRC supports DDE communication, which allows external applications to control mIRC
or to request information from it. Note that it is also possible to communicate with mIRC
directly by using SendMessage(). The default DDE service name is mIRC, though this
can be changed in the options dialog.

DDE Topics
mIRC supports the following DDE Topics.

For each of the following DDE topics an example is given using the /dde command and
$dde() identifier (both are explained after this section) which should help you understand
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how they work.

Topic: COMMAND
Transaction Type: XTYP_POKE
Item: None
Data (Arguments): One line of text containing the command to be performed.
Returns:Nothing
Example: /dde mirc command "" /server irc.dal.net
Description: This tells mIRC to execute whatever command you give it.

Topic: EVALUATE
Transaction Type: XTYP_REQUEST
Item: The line of text containing variables or identifiers that you want evaluated
Data (Arguments): None
Returns:Evaluated line

Topic: CONNECT
Transaction Type: XTYP_POKE
Item: None
Data (Arguments): one line of text in the form: address,port,channel,number
Returns:Nothing
Example: /dde mirc connect "" irc.undernet.org,6667,#mIRC,1
Description: This will tell mIRC to connect to the server irc.undernet.org, port 6667 and
after it has connected it will automatically join channel #mIRC. If the number at the end
is a 1 then the mIRC window will be activated, if it is a 0 it will not.

Topic: CONNECTED
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns:"connected" if you are connected to a server, "connecting" if you are in the
process of connecting to a server, and "not connected" if you are not currently connected
to a server.
Example: //echo mIRC is currently $dde(mirc, connected) to a server

Topic: EXENAME
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns: The full path and name of the mIRC EXE file
Example: //echo The mIRC exe path and name is $dde(mirc, exename)
Description: This might be useful for applications that need to know the path and name
of the exe file.

Topic: VERSION
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns: mIRC version info.
Example: //echo The version number is $dde(mirc, version)

Topic: INIFILE
Transaction Type: XTYP_REQUEST
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Item: None
Data (Arguments): None
Returns: The full path and name of the main INI file
Example: //echo The main ini file is $dde(mirc, inifile)
Description: This might be useful for applications that need to take a look at the INI file
for various bits of information.

Topic: NICKNAME
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns: The nickname currently being used.
Example: //echo My mIRCbot is using the nickname $dde(mirc, nickname)

Topic: SERVER
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns: The server to which you were last or are currently connected. eg.
"irc.undernet.org"
Example: //echo The current server is $dde(mirc, server)

Topic: PORT
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns: The port currently being used to connect to the irc server
Example: //echo My mIRCbot is using port $dde(mirc, port)

Topic: CHANNELS
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns: A single line of text listing the channels which you are currently on separated by
spaces. eg. "#mirc #mircremote #irchelp"
Example: This should only be called by an application, not from within an mIRC alias.
Description: The line of text that this returns could be quite long, so an application
should be prepared to handle this.

Topic: USERS
Transaction Type: XTYP_REQUEST
Item: Channel name, in the form #channel
Data (Arguments): None
Returns: A single line of text listing the users on the specified channel separated by
spaces.
Example: This should definitely only be called by an application, not from within an mIRC
alias.
Description: You can only request the names of users on a channel which mIRC has
joined. The line of text that this returns could be quite long, so an application should be
prepared to handle this.

DDE Commands and Identifiers
The following commands and identifiers allow you to communicate with other
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DDE-enabled applications.

All DDE transactions are synchronous, mIRC waits at most one second for a reply or
acknowledgement to any DDE request that it makes.

/ddeserver [[on [service name]] | off]
The default DDE service name is mIRC. The mIRC DDE Server defaults to on at startup
unless it finds another mIRC or another application using its current DDE Service name.

You can use the /ddeserver command to manually turn the dde server on or off. If you
have more than one mIRC acting as a DDE server then you should specify a different 
service name for each mIRC.

/dde [-re] <service> <topic> <item> [data]
This sends an XTYP_POKE by defaults unless you specify the -r switch in which case an
XTYP_REQUEST is sent, or if you specify the -e switch, an XTYP_EXECUTE is sent.

If you are sending an XTYP_POKE then all four arguments are mandatory.

If you are sending an XTYP_REQUEST then the first three arguments are mandatory.
This is why you can see a "" in the examples above, it acts as a filler and is not actually
used for anything.

If you are sending an XTYP_EXECUTE then only the first three arguments are required.

$dde(name, topic, item, delay)
Returns the value returned by the specified service name, topic, and item, by sending an
XTYP_REQUEST.

//echo My other mIRC is $dde(mirc, connected) to $dde(mirc, server)

The item and delay parameters are optional.

The delay value indicates that you want $dde() to wait N seconds for a reply before
giving up. The default is one second, which is usually enough.

Note: If the value returned by $dde is too long for mIRC to handle, $dde returns a value
of $error.

$isdde(name)
Returns $true if the specified dde name is in use, $false otherwise.

$ddename
Returns the current dde service name in use by the mIRC DDE Server.

10.11

Dialogs

mIRC allows you to create custom Dialogs which can be used to request input from a
user, or to perform many other useful tasks.
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There are two types of dialog; a modeless dialog, created with the /dialog command,
and a modal dialog, created with the $dialog() identifier. Both are described below.

The /dialog command
The /dialog command allows you to create a modeless dialog with the -m switch. This
type of dialog does not halt or return a value to the calling script, and the dialog can be
displayed indefinitely and used for many purposes.

  /dialog -mdtsonkcvie <name> [table] [x y w h] [text]

  -m create a modeless dialog using 'table'
/dialog -m name table

  -a used with -m, uses currently  active window as the parent

  -x close a dialog without triggering any events

  -d open dialog on the desktop, used with -m

  -h make dialog work with active server connection

  -t set dialog title
/dialog -t name text

  -s set dialog size/pos
/dialog -s name x y w h

  -r centers dialog
  -blp interprets size as dbu, map, or pixels

  -o set dialog ontop of all windows
  -n unset ontop setting

  -k click ok button
  -c click cancel button

  -v makes the dialog the active window

  -ie minimize/restore the dialog if created on the desktop

  -g renames existing dialog using <name> <newname>

Where name is the name by which you will refer to the dialog, and table is the dialog
table name used to create dialog (see below).

The $dialog() identifier
Dialogs created with $dialog() are modal, ie. they halt the script until the dialog is
closed, they return a value, and they do not allow access to other windows while the
dialog is open. These types of dialogs should only be displayed for immediate user input.
The $dialog() identifier works the same way as other identifiers:

  %result = $dialog(name,table[,parent])

Where name is the name by which you will refer to the dialog, table is the dialog table
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name used to create dialog (see below), and parent is the parent window of the dialog,
this can be a window name, or -1 = Desktop window, -2 = Main mIRC window, -3 =
Currently active window, -4 = Currently active dialog, if no dialog is open, defaults to -3
behaviour.

Note: This type of dialog cannot be called from a remote script event.

You can also use the $dialog(name/N) identifier to list any open dialogs, where N
returns the Nth open dialog. If N is zero, the total number of open dialogs is returned.

$dialog() also supports these properties:

x,y,w,h returns the size and position of the dialog
cw,ch returns width and height of client area of dialog
title returns the title of the dialog
modal returns $true if the dialog is modal, otherwise $false
table returns the dialog table that the dialog is using
ok returns the id of the Ok button if you specified one
cancel returns the id of the Cancel button if you specified one
result returns the id of the Result button if you specified one
focus returns id of control that currently has focus
tab returns id of tab that is currently displayed
mapw,maph return mapped dbu pixel measurements
active returns $true if dialog is the active window, otherwise $false
hwnd returns dialog window handle

The dialog table
You can use the dialog prefix to create a dialog table called name in a script using this
format:

dialog [-l] name {
  title "text"
  icon filename, index
  size x y w h
  option type (dbu, map, pixels, notheme, disable)

  text "text", id, x y w h, style  (left, right, center, nowrap)
  edit "text", id, x y w h, style  (left, right, center, multi, pass, read, return, hsbar,
vsbar, autohs, autovs, limit N, rich)
  button "text", id, x y w h, style  (default, ok, cancel, flat, multi)
  check "text", id, x y w h, style  (left, push, 3state)
  radio "text", id, x y w h, style  (left, push)
  box "text", id, x y w h, style  (left, right, center)
  scroll "text", id, x y w h, style (top left bottom right horizontal range N N)

  list id, x y w h, style          (sort, extsel, multsel, size, vsbar, hsbar, check, radio)
  combo id, x y w h, style          (sort, edit, drop, size, vsbar, hsbar)

  icon id, x y w h, filename, index, style    (noborder top left bottom right small
large actual)

  link "text", id, x y w h
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  tab "text", id, x y w h
  tab "text", id

  menu "text", menuid [, menuid]
  item "text", id [, menuid]
  item break, id [, menuid]
}

The -l switch makes a dialog table local, so that it can only be accessed by other scripts
in the same file.

Where "text" is the default text for a control, id is a number that uniquely identifies a
control, x y w h are the position and size of the control, and style consists of a
combination of the words in brackets.

Other Styles
In addition to the styles shown in brackets for each type of control, you can also specify
these styles:

 disable disables the control
 hide hides the control
 group start of a group
 result identifies the control whose value will be used as the return value to the
calling script when the user presses the ok button

Variables
If you specify a %variable name in a dialog item definition, the %variable will be set with
the contents of that item when the dialog is closed.

edit "", 2, 10 10 100 20, autohs %result

Tab control
The first tab definition specifies the size of the tab control, and any following tab
definitions add tabs to it. You can associate controls with a specific tab by using the tab
style followed by the id value for a tab, as shown in the example  below.

dialog test {
  title "mIRC"
  size -1 -1 110 100
  option dbu

  tab "m", 1, 5 5 100 90
  tab "I", 2
  tab "R", 3
  tab "C", 4

  button  "m is for ... ;)", 11, 30 50 50 24, ok tab 1
  button  "I is for Internet", 12, 30 50 50 24, tab 2
  button  "R is for Relay", 13, 30 50 50 24, tab 3
  button  "C is for Chat", 14, 30 50 50 24, tab 4
}

You can use /did -fu to set the focus on a specific tab, and /did -vh to show/hide the
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entire tab control.

Menus
You can add menus and submenus to custom dialogs using the menu and item prefixes:

dialog name {
  menu "text", <menuid> [, menuid]
  item "text", <id> [, menuid]
  item break, <id> [, menuid]
}

If you do not specify a menuid for an item, it will use the last menuid that was
created/used in a previous menu/item.

For example, the following menu definition reproduces the File menu of the mIRC Editor
dialog:

dialog test {
  title "mIRC"
  size -1 -1 110 100
  option dbu

  menu "&File", 60
  item "&New", 70

  menu "&Load", 80, 60
  item "&Script", 90
  item break, 100
  item "&Users", 110
  item "&Variables", 120

  item "&Unload", 130, 60

  item break, 140

  item "&Save", 150
  item "&Save As...", 160
  item "Save &All", 170

  item break, 180

  item "Save && &exit", 190, ok
  item "&Cancel", 200, cancel
}

You can use the /did command (described below) to enable/disable, check/uncheck,
append, delete, insert, and overwrite a menu item.

To add an item to a menu you can use: /did -a name <menuid> <newid> <text>.

To insert an item you must use: /did -i name <id> <newid> <text> where <id> is the
item before which you want to insert an item.
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Dbu vs. Pixels
The dbu option makes mIRC use dialog base units when creating the dialog, this ensures
that the dialog will look the same for all users under any size display, etc. Pixels is the
default however to maintain compatibility with previous scripts.

The identifiers $dbuw and $dbuh return the dbu per pixel width and height values for
the current display. This may or may not be an integer value.

Ok and Cancel buttons
You can specify an ok and/or cancel button, and when a user clicks the ok or cancel
buttons, the dialog is closed. You can prevent the dialog from closing if a user clicks the
ok button by using /halt.

Default position and size
If you specify -1 for any of the x y w h values in the size setting for the dialog, a default
setting is used. To make mIRC center the dialog in a window, specify x y as -1 -1. The
size setting can be over-ridden in the init event (see below) by using /dialog -s name x y
w h.

The On Dialog event
If a user changes the state of controls in the dialog, eg. clicks on a button, types text in
an edit box, etc., this triggers the on dialog script event which allows you to monitor
input from the user:

 on 1:dialog:name:event:id: {
   echo $dname $devent $did
 }

Where name identifies the dialog, id is the id number of the control triggering the event,
and event can be:

 init just before a dialog is displayed, controls can be initialized in this event. id is
zero.
 close when a dialog is closed.
 edit text in editbox or combo box changed.
 sclick single click in list/combo box, or check/uncheck of radio/check buttons, or click
of a button.
 dclick double click in list/combo box.
 menu a menu item was selected.
 scroll scroll control position has changed.

You can specify multiple ids by using commas and dashes, eg. 1-3,5,7,9,15-20.

You can also detect mouse events that are not associated with a specific control:

 mouse mouse moved
 sclick left button down
 uclick left button up
 dclick double click
 rclick right button click
 drop drop click

You can use $mouse to retrieve the current mouse position.
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Note: Dialog events, such as the click event, are triggered by windows messages.
Sometimes, clicking in a window can result in multiple window messages being sent,
such as activation, focus, mouse movement, clicks, and so on. This means that if you are
doing something in an event that affects the GUI, such as using /window, you may need
to use a /timer to avoid unexpected behaviours.

The /did command
The /did command allows you to modify the values of controls in a dialog, eg. changing
the text in an edit control, or setting focus to a button, or deleting lines in a listbox.

  /did -ftebvhnmcukradiogjsl name id [n] [text | filename]

  -f set focus on id
  -t set id as default button

  -e enable id
  -b disable id
  -v make id visible
  -h hide id

  -n enables editbox
  -m disables editbox

  -c check checkbox/radiobutton list/combo line
  -u uncheck checkbox/radiobutton list/combo line
  -k works with -cu, keeps other selections in a listbox

  -s checks the checkbox of an item in a listcb control
  -l unchecks the checkbox of an item in a listcb control

  -r clear all text in id
  -a add line of text to end
  -d delete Nth line
  -i insert text at Nth line
  -o overwrite Nth line with text

  -g set a new icon/bmp to an icon control
/did -g name id [n] filename

  -z resets the width of horizontal scrollbar in listbox

  -j resets the edited setting in an editbox

Where name identifies the dialog and id is the id number of the control you want to
modify.

If you want to modify several controls at the same time, you can specify multiple id
numbers separated by commas, eg. /did -b name 2,12-16,20 etc.

You can select a range of text in an editbox using /did -c name id [n] [start [end]]. This
selects line N in editbox, and sets selection to specified range of characters.
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You can mark a 3state checkbox as indeterminate by specifying both -cu switches.

You can access the edit control in a combobox by using 0 as the N value.

To change the range of a scrollbar control, you can use /did -z name id [min max].

$did(name,id)
You can get the settings and values of controls in a dialog by using the $did() dialog id
identifier with the following formats and properties as appropriate to the control to which
you are referring.

 $did(name,id)
 $did(name,id,N)

 If used in the on dialog event, name is optional.

The following $did() properties are supported:

 text returns line or Nth line
$did(id) is same as $did(id).text

 len returns length of line or length of Nth line
 lines returns number of lines
 sel returns Line Number of Nth selected line

if N is 0, returns number of selected lines
 seltext returns selected text in an editbox or first selected item in a listbox
 selstart returns select start character in editbox line
 selend returns select end character in editbox line
 edited returns $true if text in editbox was changed
 state returns 0 = off, 1 = on, and 2 = indeterminate
 next returns id of next control in tab key order
 prev returns id of previous control in tab key order
 visible returns $true if the control is visible, otherwise $false
 enabled returns $true if the control is enabled, otherwise $false
 isid returns $true if id exists in the dialog, otherwise $false
 csel returns line number of Nth checked box in a listcb control

if N is 0, returns number of checked lines
 cstate returns 0 = off, 1 = on for item in a listcb control

You can access the edit control in a combobox by using 0 as the N value.

$didwm(name,id,wildtext,N)
Returns the number of the line that matches wildtext, with the search starting at line N.
N is optional.

$didreg(name,id,regex,N)
Returns the number of the line that matches the regular expression, with the search
starting at line N. N is optional.

$didtok(name,id,C)
Returns a tokenized list of the items in a list/combo/edit box.

You can use /didtok name id C text to add a tokenized list of items to a list/combo/edit
box.
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10.12

DLL Support

The /dll and $dll() features allow you to make calls to DLLs designed to work with
mIRC. The main reason you would want to do this is that processing information in a
DLL can be far faster than doing so in a script, so for intensive data processing a DLL
would be more efficient.

Note that mIRC also supports calling COM objects, for calling non-standard DLLs.

Warning: do not use DLLs from sources you do not trust. See the Accepting Files section
for information on the dangers of accepting and using files from the internet.

  /dll <filename> <procname> [data]
  $dll(filename, procname, data)
  $dllcall(filename, alias, procname, data)

The above open a DLL, call the procname routine, and send it the specified data. The
only difference is that $dll() can return a value, like all other identifiers.

$dllcall() is multi-threaded so it will not halt the script and will call the specified alias
once the call returns.

Technical notes
This section contains technical information for programmers who want to create DLLs
for use with mIRC.

The routine in the DLL being called must be of the form:

int __stdcall procname(HWND mWnd, HWND aWnd, TCHAR *data, TCHAR *parms, BOOL
show, BOOL nopause)

mWnd is the handle to the main mIRC window.

aWnd is the handle of the window in which the command is being issued, this might not
be the currently active window if the command is being called by a remote script.

data is the information that you wish to send to the DLL. On return, the DLL can fill this
variable with the command it wants mIRC to perform if any.

parms is filled by the DLL on return with parameters that it wants mIRC to use when
performing the command that it returns in the data variable.

show is FALSE if the . prefix was specified to make the command quiet, or TRUE
otherwise.

nopause is TRUE if mIRC is in a critical routine and the DLL must not do anything that
pauses processing in mIRC, eg. the DLL should not pop up a dialog.

The DLL can return an integer to indicate what it wants mIRC to do:
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  0 means that mIRC should /halt processing

  1 means that mIRC should continue processing

  2 means that it has filled the data variable with a command which it wants mIRC to
perform, and has filled parms with the parameters to use, if any, when performing the
command.

  3 means that the DLL has filled the data variable with the result that $dll() as an
identifier should return.

Note: You may need to create a .def file with the procedure names exported when
compiling your DLL.

Keeping a DLL Loaded after a call
By default a DLL is unloaded immediately after you make the /dll or $dll() call. You can
keep a DLL loaded by including a LoadDll() routine in your DLL, which mIRC calls the
first time you load the DLL:

  void __stdcall LoadDll(LOADINFO*);

  typedef struct {
    DWORD  mVersion;
    HWND   mHwnd;
    BOOL   mKeep;
    BOOL   mUnicode;
    DWORD mBeta;
    DWORD mBytes;
  } LOADINFO;

mVersion contains the mIRC version number in the low and high words.

mHwnd contains the window handle to the main mIRC window.

mKeep is set to TRUE by default, indicating that mIRC will keep the DLL loaded after the
call. You can set mKeep to FALSE to make mIRC unload the DLL after the call (which is
how previous versions of mIRC worked).

mUnicode indicates that strings are Unicode as opposed to ANSI.

mBeta contains the mIRC beta version number, for public betas.

mBytes specifies the maximum number of bytes (not characters) allowed in the data
and parms variables.

Note: For backward compatibility reasons, the default format is ANSI, however Unicode
is generally recommended for new DLLs.

Unloading a DLL
You can unload a loaded DLL by using the -u switch:

  /dll -u <filename>
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You can browse the list of loaded DLLs by using:

  $dll(N/filename)   returns the Nth loaded DLL

mIRC will automatically unload a DLL if it is not used for ten minutes, or when mIRC
exits.

You can also define an UnloadDll() routine in your DLL which mIRC will call when
unloading a DLL to allow it to clean up.

  int __stdcall UnloadDll(int mTimeout);

  The mTimeout value can be:

    0   UnloadDll() is being called due to a DLL being unloaded with /dll -u.

    1   UnloadDll() is being called due to a DLL not being used for ten minutes. The
UnloadDll() routine can return 0 to keep the DLL loaded, or 1 to allow it to be unloaded.

    2   UnloadDll() is being called due to a DLL being unloaded when mIRC exits.

10.13

File Handling

File handling support allows you to manipulate your own files directly using scripts. You
should already be an expert at writing Aliases, Popups, and Scripts before attempting to
use the commands below.

File handles are a limited resource so it is important that you understand how these
commands work before trying to use them. Files should always be closed after they have
been used to make them available to other applications.

File Handling Commands

/fopen [-nox] <name> <filename>
Opens the specified file and assigns a name to it for later reference. The open fails if the
file does not exist. The -n switch creates the file if it does not already exist, fails if the
file does exist. The -o switch creates a new file, overwrites if it exists. The -x switch
opens the file for exclusive access, preventing other applications from accessing the file.

Note: If this command fails, the script will continue to run. See $ferr and $feof below.

/fclose <name | wildcard>
Closes the file associated with this name. If you specify a wildcard, all matching names
are closed.

/flist [name | wildcard]
Lists all open files, or those matching the specified name.

/fseek <name> <position>
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Sets the read/write pointer to the specified position in the file. The following switches
may also be used to move the file pointer:

 -l <name> <line number>
 -n <name>
 -p <name>
 -w <name> <wildcard>
 -r <name> <regex>

The -n switch moves the pointer to the start of the next line.

The -p switch moves the pointer to the start of the current line. If the pointer is already
at the start of a line, it is moved to the start of the previous line.

/fwrite [-bn] <name> <text | &binvar>
Writes text or the specified binary variable to the file. The -b switch indicates that a
&binvar is being specified. The -n switch appends a $crlf to the line being written.

File Handling Identifiers

$fopen(name | N)
Returns information about an open file.

Properties: fname, pos, eof, err

Note: the .eof and .err properties must be checked after each file access command or
identifier, since file access errors will not halt a script.

$fread(name | N)
Returns the next $crlf delimited line.

$fread(name | N, M, &binvar)
Returns the number of bytes read into the specified binary variable, where M is the
number of bytes to read.

$fgetc(name | N)
Returns the next character.

$feof and $ferr
Return the results of the last file access attempt in any script, where $feof indicates the
end of file was reached, and $ferr indicates there was a file error of some kind.

10.14

File Server

The mIRC fileserver allows other users to access files on your hard disk and is therefore 
dangerous since if used improperly it will allow them to access private/confidential
information.

The /fserve command
A fileserver is initiated by using the /fserve command which initiates a DCC Chat to the
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specified user.

/fserve <nickname> <maxgets> <homedir> [textfile]

nickname is the user's nickname.
maxgets is the maximum number of simultaneous dcc gets that a user can have
during a fileserver session.
homedir is the home directory that contains the files and directories that you want to
allow the user to access.
textfile is a text file that contains a welcome message that is displayed to the user when
they first connect.

/fserve goat 5 server welcome.txt

The above command will initiate a filserver session to user goat, with a maximum of five
simultaneous dcc gets, the homedir as server, and will send goat the welcome message
in the welcome.txt file.

In each directory, you can place a dirinfo.srv file which describes that directory. Each
time the user performs a CD to change into a directory, mIRC will look for this file and if
it finds it, the text in it will be sent to the user.

Fileserver commands
The commands available to a user connected to your fileserver are:

cd <directory> - change to the specified directory.

dir [-b|k] [-#] [/w] - lists the name and size of each file in the current directory. The
/w switch forces a wide listing. The [-b|k] selects bytes or k's. The [-#] specifies the
number of files on each line in a horizontal listing.

ls [-b|k] [-#] - lists the name of each file in the current directory using a wide listing.

get <filename> - asks the fileserver to DCC Send the specified file.

read [-numlines] <filename.txt> - reads the specified text file. The user will be sent a
default of 20 lines and then prompted whether to continue listing. The -numlines option
changes the default number of lines to a value between 5 and 50.

help - lists the available commands.

exit or bye - terminates the connection.

Note:
1. If a directory has a large number of files try to split them up into subdirectories, this
will improve performance.
2. If a user is idle for too long the fileserver will automatically close the connection. You
can set the idle time out in the DCC Options dialog.
3. A user is limited to opening a single fileserver session at any one time. If mIRC
initiates a fileserver session to a user and that user does not respond then the fileserver
session will have to time-out and close before that user can ask for another session.
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10.15

Hash Tables

Hash tables allow you to efficiently store large amounts of information which can be
quickly referenced and retrieved later on.

A hash table can be created, freed, referenced, or modified using the following
commands and identifiers.

/hmake -s <name> <N>
Creates a new hash table with N slots.

A hash table can store an unlimited number of items regardless of the N you choose,
however the bigger N is, the faster it will work, depending on the number of items stored
eg. if you expect that you will be storing 1000 items in the table, a table of N set to 100
is quite sufficient.

The -s switch makes the command display the result.

/hfree -sw <name>
Frees an existing hash table.

The -w switch indicates that name is a wildcard, all matching tables are freed.

/hadd -smNbczkuN <name> <item> [text | &binvar]
Adds an item to an existing hash table.

If the item you are adding already exists, the old item is replaced.

The -mN switch creates the hash table if it does not already exist, where N is the number
of slots.

The -uN switch unsets the item after N seconds.

The -k switch keeps the current -uN setting for an item.

The -b indicates that you are adding a &binvar item to the hash table.

The -c switch treats the &binvar as text and chops it at the first null value.

The -z switch decreases hash item once per second until it reaches zero and then unsets
it.

The /hinc and /hdec commands use the same parameters as /hadd and increase or
decrease the number value of an item.

When used with /hinc or /hdec, the -c switch increases or decreases the value once per
second.

/hdel -sw <name> <item>
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Deletes an item from a hash table.

The -w switch indicates that item is a wildcard, all matching items are freed.

/hload -smNbBni <name> <filename> [section]
/hsave -sbniau <name> <filename> [section]
Load or save a table to/from a file.

These load/save plain text to a text file, with item and data on separate lines. $cr and
$lf characters are stripped from text when saving as plain text.

The -mN switch creates the hash table when loading if it does not already exist, where N
is the number of slots.

The -b switch loads or saves binary files. This uses an index that allows item values up to
65535 in length.
The -B switch loads or saves binary files. This uses an index that allows item values up
to 4294967295 in length. This is not compatible with files created by the -b switch.

Note: $cr and $lf are preserved when saving tables as binary files.

The -n switch loads or saves files as data only, with no items. When loading, each line of
data is assigned an N item value, starting at N = 1.

/hsave also supports -a to append to an existing file instead of overwriting it.

By default /hsave excludes items that are in the /hadd -uN unset list, the -u switch
forces it to include the unset items.

The -i switch treats the file as an ini file. You can specify an optional section name after
the filename.

Note: Due to how hash tables work, items are stored in hash tables in a random order.
You should not depend on items being stored, saved, or loaded in any particular order.

$hget(name/N)
Returns name of a hash table if it exists, or returns the name of the Nth hash table.

Properties: size

$hget(moo).size   returns the N size of table, as specified in /hmake

$hget(name/N, item)
Returns the data associated with an item in the specified hash table.

Properties: unset

The unset property returns the time remaining before an item is unset.

$hget(name/N, item, &binvar)
Assigns the contents of an item to a &binvar.

$hget(name/N, N).item
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This allows you to reference the table as an index from 0 to N, in order to look up the Nth
item in the table.

If N is zero, returns the total number of items in the table.

You can also reference the Nth data value directly with $hget().data.

Note: This method is provided as a convenience, it is not an efficient way to use the
hash table.

$hfind(name/N, text, N, M, @window | command)
Searches table for the Nth item name which matches text. Returns item name.

Properties: data

If you specify the .data property, searches for a matching data value.

M is optional, and can be:

  n normal text comparison (default if M is not specified)
  w text is wildcard text
  W hash table item/data is wildcard text
  r text is regular expression
  R hash table item/data is regular expression

If you specify a custom @window name (with a listbox), the custom @window listbox will
be filled with the results.

If you specify a command, it will be performed on every item that is found. You can use
$1- to refer to the item, eg. //echo 1 result: $hfind(name, *, 0, w, echo $1-)

If you use /halt in the command/alias, this halts the search.

Note: In the case of 'r' regular expression searching through a binary variable, long
results will be truncated.

10.16

The Internal Address List

mIRC maintains an internal address list of all users who are currently on the same
channels as you.

The internal address list is used by the /guser, /ruser, /ban, /ignore, and /dns commands
to quickly find a user's address without resorting to a /userhost server lookup.

A user's address is added to the list either when they join the channel, send a message
to a channel, or make a mode change.

A user's address is removed from the list when they are no longer on any of the
channels which you are currently on.
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The reason why only addresses for users on the same channels as you are stored is
because this guarantees the integrity of the list. ie. that a specific nickname is
associated with a specific address.

IAL Commands

/ial [on | off]
Turns IAL on or off. Note that this setting is not persistent across sessions and resets to 
on every time mIRC is run.

/ialfill #channel
Fills the IAL by sending /WHO #channel to the server and processing the WHO reply.

If the server supports WHOX, an extended /WHO #channel %acdfhlnrstu,T is sent to
receive the account name, where T is a number that uniquely identifies the WHO request
and is set to 995.

Note: If the IAL already contains all of the addresses for nicknames on a channel, it will
not send a /WHO to the server. You can force the IAL to be refilled by using the -f switch,
however note that, like all high bandwidth requests, this could cause the server to close
your connection if you do it too often.

/ialclear [nick]
Clears the IAL, or if a nickname is specified, clears that nickname's IAL entry.

/ialmark -nrw <nick> [name] [text]
Adds marks, in the form of text, to the IAL entry for a nickname.

The -n switch sets the name of the mark. If -n is not used, the default name 'default' is
used.

The -r switch removes the mark.

The -w switch is used with -rn to treat name as a wildcard.

IAL Identifiers

$ial
Returns $true or $false depending on whether the IAL is on or off.

$ial(nick/mask,N)
Returns the Nth address matching nick or mask in the Internal Address List.

Properties: nick, user, host, addr, mark, account, away, gecos, id

$ial(*!*@*.com,0) returns the total number of addresses in the IAL matching
*!*@*.com
$ial(*!*@*.com,3) returns the 3rd address in the IAL matching *!*@*.com
$ial(*!*@*.com,4).nick returns the nick of the 4th matching address ending in .com
$ial(*!*@*.com,4).user returns the userid of the 4th matching address ending in
.com

To scan each address in the IAL you can use $ial(*,N).
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The N parameter is optional, defaults to 1 if not specified.

$ialchan(nick/mask,#,N)
Returns the Nth address on the specified channel matching nick or mask in the Internal
Address List.

This works the same way as the $ial() identifier.

$ialmark(nick,N/name)
Returns the marks added by the /ialmark command.

Properties: name, mark

10.17

Multi-server

mIRC allows you to connect to more than one IRC server at a time. This means that
scripts need to be multi-server aware in order to behave correctly when a user is
connected to more than one server. The following commands and identifiers allow a
script to handle multiple server connections.

Identifiers

Each new server window that is created is assigned a connection id.

Each window that is created, such as a channel or query window, is associated with the
connection id of the server where that window was opened.

$cid
Returns the server connection id for the current script.

Some window identifiers have their own connection id counterpart, such as $activecid
and $lactivecid.

Most window related identifiers also have a .cid property.

$scid(N)[.id]
Returns the connection id, where N is a $cid value.

If N = 0, returns total number of open server windows.
If N = -1, returns active connection.

If you specify a property which is an identifier, it returns the value of that identifier for
that connection. This also works for custom identifiers.

Note: The property cannot use brackets.

$scon(N)[.id]
Returns the connection id, where N is the Nth connection.
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If N = 0, returns total number of open server windows.
If N = -1, returns active connection.

If you specify a property which is an identifier, it returns the value of that identifier for
that connection. This also works for custom identifiers.

Note: The property cannot use brackets.

Commands

Scripts can be made to perform commands on specific server connections by using /scid
and /scon.

/scid <-rsatM | N> [command]
Changes the active connection for a script to connection id N, where N is a $cid value.

All commands after the /scid command will be performed on the new connection id.

The -r switch resets the connection id to the original id for that script.

If you specify the command parameter, the connection id is set only for that command.

The /scon command works in exactly the same way, except that N represents the Nth
connection, not a connection id value.

The -a and -tM switches can only be used if you specify a command.

The -a switch performs the command on all connection ids.

The -tM switch limits the command to being performed only on servers with a certain
connection status, where M is an or'd value of 1 = server connected, 2 = not connected,
4 = connecting, 8 = not connecting. The command is only performed if M matches the
connect status of the connection id.

The -s makes any called commands or identifiers show their results.

Note: If you use a command that contains $identifiers, and you want the identifiers to be
evaluated in the target connection, you must pass them as $!identifier to prevent them
from being evaluated first in the current connection.

10.18

Picture Windows

The picture window is a special type of custom window that can display a combination
of text, graphics, and pictures, and can trigger script events relating to mouse clicks and
movements.

Once you have opened a picture window using the /window command, you can use the
following commands and identifiers to draw and monitor activity in this window.

Drawing commands
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/drawsize @ <w h>
Sets the minimum bitmap size for a picture window to the specified width and height, up
to a maximum of 8192 x 8192 pixels.

Normally, the maximum point that can be drawn to is based on the size of the visible
window.

If you make the window bigger, the bitmap is enlarged.

If you make the window smaller, the bitmap is shrunk but only to the largest point that
has already been drawn on it.

The largest point can be reset with the /clear command.

The /drawsize command allows you to set a minimum bitmap size.

Note: Bitmaps use a large amount of memory and can cause Windows to run out of
memory if not used carefully. You should always use the smallest bitmap that you need.

/drawdot -ihnr @ <color> <size> <x y> [<x y>...]
Draws a dot using the specified color and size at the x,y co-ordinates. Multiple
co-ordinates can be provided.

The -i switch draws in inverse mode.

The -h switch highlights the windows icon if it is minimized.

The -n switch prevents the display from being updated immediately. This allows you to
make changes to the window in the background and then display the results only when
you have finished. You can update the display by using any of the /draw commands with
only the window name specified.

The -r switch indicates that the color is in RGB format. You can use $rgb(N,N,N) to
create an RGB value.

The whole window can be cleared by using the /clear command, eg. /clear @name. You
can also specify the -n switch in /clear to delay the effect as described above.

/drawline -ihnr @ <color> <size> <x y> <x y> [<x y>...]
Draws a line from the first <x y> co-ordinate to the second, if more co-ordinates are
specified, the line is continued. The switches are the same as those in /drawdot.

/drawrect -ihnrfecd @ <color> <size> <x y w h> [<x y w h>...]
Draws a rectangle at the specified co-ordinates of the specified width and height. If more
co-ordinates are specified these are also drawn as separate rectangles.

The -f switch fills the rectangle with the current color.

The -e switch draws an Ellipse instead of a rectangle. You can draw a filled ellipse if you
also specify the -f switch.

The -c switch draws a focus rectangle.
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The -d switch draws a rounded rectangle, using the format /drawrect -d x y w h [w h],
where w and h are the width and height of the ellipse used to draw the corners.

The remaining switches are the same as those in /drawdot.

/drawfill -ihnrs @ <color> <color> <x y> [filename] [<x y>...]
Fills an area with the specified color starting at the specified co-ordinates.

The -s switches indicates that the second color parameter is the color that should be
filled (surface fill). If no -s is specified, the second color is the border color at which
filling should stop (border fill).

The optional [filename] specifies a bitmap .BMP file that is 8 by 8 pixels in size and is
used as a fill pattern.

The remaining switches are the same as those in /drawdot.

/drawtext -dhnrpbocv @ <color> [color] [fontname fontsize] <x y [w h]>
<text>
Draws text at the specified co-ordinates.

The -p switch processes and interprets color/bold/etc. codes in the text.

The -d switch disables tab character support.

The -b switch indicates that you have specified the second color parameter as the
background color for the text.

The -o switch means the specified font should be in bold.

The -c switch means that you have specified the [w h] values as the rectangle in which
text should be printed. Text will be clipped if it extends beyond this rectangle.

The -v switch means that you have specified a &binvar binary variable instead of text.

The remaining switches are the same as those in /drawdot.

Note: If you use a negative number for the font size, it will match the size of fonts in the
font dialog.

/drawsave -abNqNvNdu @ [x y w h] <filename|&binvar>
This saves the background picture of the specified picture @window to a .bmp filename.

The -a switch specifies the [x y w h] area of the bitmap to be saved.

The -bN switch allows you to specify the bit depth of the saved file, which can be 1, 4, 8,
16, 24, or 32.

The -qN switch allows you to specify the quality of the jpeg file that is being saved,
where N is between 1 and 100.

The -vN switch allows you to save the bitmap to a &binvar, where N is optional and can



187

 

be p = png, g = gif, j = jpg.

The -du switches dither and quantize the bitmap, for use with the -b switch.

/drawscroll -hn @ <x> <y> <x y w h> [<x> <y> <x y w h>...]
Scrolls the region inside the specified rectangle. The first <x> and <y> parameters
represent the distance to scroll and can be positive or negative.

The remaining switches are the same as those in /drawdot.

/drawcopy -ihmnt @ [color] <x y w h> @ <x y [w h]>
Copies part of a picture to a different position in the same window or to another window.
If the second [w h] parameters are specified, the picture is stretched/squeezed to fit.

The -t switch indicates that you have specified the [color] RGB value as a transparent
color in the source bitmap.

The -m switch changes the stretch mode quality when the picture is resized.

The remaining switches are the same as those in /drawdot.

/drawpic -ifhmnotsclgNv @ [color] <x y [w h]> [x y w h] [N] [M]
<filename|&binvar>
Loads and draws a picture at the specified co-ordinates. The picture can be a graphics
file, or an ico/exe/dll file.

If the first [w h] are specified, it is stretched or squeezed to fit. The second [x y w h]
rectangle specifies which portion of the loaded bitmap should be displayed ie. a bitmap
could contain multiple pictures.

The -t switch indicates that you have specified the [color] RGB value as a transparent
color in the specified bitmap.

The -s switch indicates that you have specified the first [w h] parameters (as explained
above) to squeeze/stretch the bitmap.

The -c switch indicates that the bitmap should be cached. This greatly speeds up
subsequent references to this bitmap. If you specify -c and the bitmap is already in the
cache, it is loaded and used from the cache, otherwise it is reloaded from the file. You
can clear the entire cache with /drawpic -c.

The -l switch tiles the picture.

The -m switch changes the stretch mode quality when the picture is resized.

The -o switch indicates that you have specified the [N] value before the filename
represents the index of the icon in the file. This also works with GIF files to  specify the
Nth frame.

The -f switch works with -o to specify the Nth icon and the Mth frame in that icon, for an
icon that contain multiple icons.

The -gN switch attempts to load the large icon in an icon file, if none exists, it loads the
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small icon. If N is specified, N = 0 loads the small icon, N = 1 loads the large icon, and N
= 2 loads the actual icon.

The -v switch loads a picture from a &binvar instead of a filename.

If you try to load and cache a bitmap and there are already 30 bitmaps in the cache, the
bitmap with the lowest reference count is freed and replaced by the new bitmap.

If you try to load a bitmap and there is not enough memory, mIRC repeatedly frees the
least referenced bitmap and tries to load again.

The remaining switches are the same as those in /drawdot.

/drawrot -hmnpbfc @ [color] <angle> [x y w h]
Rotates an area of a bitmap by the specified angle.

The -b switch indicates that you have specified the background color value.

The -f switch fits the newly rotated bitmap into the original width/height.

The -c switch centers the rotated image if -f is not specified.

The -m switch changes the stretch mode quality when the picture is resized.

The -p switch clips the rotated rectangle.

The remaining switches are the same as those in /drawdot.

/drawreplace -nr @ <color1> <color2> [x y w h]
Replaces color1 with color2 in the specified picture window.

The remaining switches are the same as those in /drawdot.

Events

Mouse events can be defined in a scripts menu definition, where they must be placed
first above all other menu items:

menu @test {
  mouse:/echo mouse moved at $mouse.x $mouse.y in $active $1
  sclick:/echo single click at $mouse.x $mouse.y
  dclick:/echo double click at $mouse.x $mouse.y
  uclick:/echo mouse released at $mouse.x $mouse.y
  rclick:/echo single right-click at $mouse.x $mouse.y in $active $1
  lbclick:/echo mouse selected $active $1
  leave:/echo mouse left $leftwin $leftwinwid $leftwincid
  drop:/echo drag and drop at $mouse.x $mouse.y
}

The mouse event is triggered when you move a mouse inside a picture window. You can
use the $mouse identifier (see below) for the x and y position of the mouse.

The sclick event is triggered when you click once inside a picture window. It will also
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trigger if you double-click.

The dclick event is triggered when you double-click inside a picture window.

The uclick event is triggered when a mouse button is released inside a picture window.

The lbclick event is triggered when an item is selected in a listbox, either with the
mouse or the cursor keys.

The leave event is triggered when the mouse is moved outside the borders of a custom
window.

The drop event is triggered if you click and drag the mouse in a window and then let go
of the button.

Identifiers

$click(@,N)
This stores a history of x,y clicks for a window.

Properties: x, y

You can use /clear -c @name to clear the history of clicks for a window. If you use
$click() with no properties it returns x y.

$getdot(@,x,y)
Returns the RGB color value of the dot at the specified position.

$height(text,font,size,bipt)
Returns height of text in pixels for the specified font.

Where bipt set the options for bold, italic, process control codes, and process tabs. Each
of these can be followed by an N value of zero or one to indicate whether they are
disabled or enabled respectively.

Note: If you use a negative number for the font size, it will match the size of fonts in the
font dialog.

$inellipse(x,y,x,y,w,h)
Returns $true if the point x y is inside the specified ellipse, and $false if it is not.

$inrect(x,y,x,y,w,h)
Returns $true if the point x y is inside the specified rectangle, and $false if it is not.

$inroundrect(x,y,x,y,w,h,w,h)
Returns $true if the point x y is inside the specified rounded rectangle, and $false if it is
not.

$inpoly(x,y,a1,a2,b1,b2,...)
Returns $true if the point x y is inside the polygon defined by the specified points, and
$false if it is not.

$mouse
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Returns the x, y position of the current mouse event, and whether the left mouse button,
shift key, and/or control key are pressed.

Properties: win, x, y, mx, my, cx, cy, dx, dy, key, lb

The $mouse identifier can be used in the mouse/click events.

With $mouse.key, you can use the & bitwise operator to check if the left button, shift
key, and/or control key are pressed.  It can also be used to check if the
right-shift/control/menu keys are pressed or the capital/scroll/numlock keys are set.

if ($mouse.key & 1) echo left button is pressed.
if ($mouse.key & 2) echo control key is pressed.
if ($mouse.key & 4) echo shift key is pressed.
if ($mouse.key & 8) echo alt key is pressed.
if ($mouse.key & 16) echo right mouse button is pressed.

The following properties can also be used:

The .win property returns the name of the active window.

The .x/.y, .mx/.my, .cx/.cy, and .dx/.dy properties return the x and y position of the
mouse relative to the active window, the main mIRC window, the primary monitor, and
the desktop respectively.

The .lb property returns $true if a mouse event occurred over a listbox, or $false if it did
not.

$onpoly(n1,n2,x,y,x,y,...)
Returns $true if two polygons overlap. n1 is the number of points in the first polygon, n2
in the second polygon.

$pic(filename,N,M)
Returns properties for bmp, jpg, png, or icon files.

Properties: size, width, height, icons, frames, delay

Note: The N and M values are optional and need to be specified with the icons, frames,
and delay properties when retrieving values for GIF and icon files that can contain
multiple frames and icons.

$rgb(N,N,N|N|name)
Returns an RGB color value for use in /draw commands.

If you use only one parameter and it is a number, it assumes it is an RGB color value
and returns N,N,N.

If it is not a number, it assumes it is one of these system color names: face, shadow,
hilight, 3dlight, frame, and text, and returns an RGB color value.

$width(text,font,size,bipt)
Returns width of text in pixels for the specified font.
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Where bipt set the options for bold, italic, process control codes, and process tabs. Each
of these can be followed by an N value of zero or one to indicate whether they are
disabled or enabled respectively.

Note: If you use a negative number for the font size, it will match the size of fonts in the
font dialog.

$window
Returns the name of the window in the leave menu event which was just left.

10.19

Playing Files

The play feature is a powerful tool that allows you to play text files to users or channels
on IRC.

The play central dialog lists all of the currently queued play requests, and allows you to
maintain the queue. Files are played in the order in which they are queued.

The play central dialog can be displayed with the /playctrl command.

The /play command

A play request can be added to the queue by using either the play dialog or the /play
command. The play dialog can be displayed by using the /play command with no
parameters. It supports most of the features of the /play command itself, described
below.

/play [-aescpbnx q# m# f# rl# t#] [alias] [channel/nick/stop] <filename>
[delay]

In its simplest form, you can play a text file to the current window with:

/play poem.txt

This plays the file poem.txt to the current window, which must be a query or channel
window, with a default delay of 1000 milliseconds, ie. 1 second. Empty lines are treated
as a delay.

If you have flood protection turned on, /play sends all lines through the flood protection
feature to prevent you from flooding yourself off the server.

The -a switch makes /play use specified alias instead of /msg or /notice.

The -e switch allows you to echo out the text to a window as it would be sent to the
server.

The -s switch allows you to play commands to the status window while offline. If you do
not specify the -s switch then you must be connected to a server to use the /play
command.
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The -c switch forces mIRC to interpret lines as actual commands instead of plain text.

The -p switch indicates that this is a priority play request and should be placed at the
head of the queue for immediate playing. The current play request will be paused and
will resume once this play request is finished.

The -b switch plays text in the clipboard to a window. The text is temporarily saved to a
file playqN.txt, which is deleted once playing is completed.

The -n switch makes the play command use /notice instead of /msg.

The -q# switch specifies the maximum number of requests that can be queued. If the
queue length is already greater than or equal to the specified number then the play
request is ignored.

/play -q5 info.txt 1000

The -m# switch limits the number of requests that can be queued by a specific
user/channel. If the user/channel already has or exceeds the specified number of
requests queued then the play request is ignored.

/play -m1 info.txt 1000

The above line limits each user to a maximum of one request at a time and ignores all of
their other requests.

Note: The -q# and -m# switches only apply to a /play initiated via a remote definition,
not by you.

To combine the above switches you would use:

/play -cpq5m1 info.txt 1000

The -r switch forces a single line to be chosen randomly from a file and played.

/play -r action.txt 1500

The -l# switch forces the specified line-number to be read from a file and played.

/play -l25 witty.txt 1500

The -f# switch plays the whole file starting from the specified line.

/play -f9 moo.txt

For switches -rlf the first line in the file can be a single number specifying the number of
lines in the file, this speeds up the process of reading the file.

The -x switch makes the play command treat the first line in the file as plain text, even if
it is a number.

The -t switch forces mIRC to look up the specified topic in the file and play all lines



193

 

under that topic. For example:

/play -thelp1 help.txt

In the help.txt file you would have:

[help1]
line1
line2
line3

[help2]
...

mIRC will play everything after [help1] and stop when it reaches the next topic header or
the end of the file.

You can use the $pnick identifier in commands which identifies the nick/channel to
which you are currently playing.

To stop the playing of a file and clear the play queue you can use /play stop.

The $play identifier

The $play(N) or $play(Nick,N) identifer returns information on items in the play queue.

Properties: type, fname, topic, pos, lines, delay, status

If you specify a nick, you can find out how many play requests a user has in the queue.

10.20

Playing Sounds

mIRC supports the playing of various types of sounds with the following commands and
identifiers.

/splay -cwmpq [filename | stop | pause | resume | seek | skip] [pos]
Plays the specified sound, which can be a .wav, .mid, or .mp3 file.

Where switch w = wave, m = midi, p = mp3, and q = queue for playing.

If you do not specify a folder, the sound folders in the Sound Requests dialog are
searched.

You can use stop to stop a currently playing sound, eg. /splay stop, or /splay -w stop, to
stop just wave files.

You can use pause, resume, and seek with all sounds.

If you specify the pos value when playing an mp3, eg. /splay llama.mp3 1000, mIRC will
play the mp3 starting at that position.
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You can also seek to a position in an mp3 while it is being played with eg. /splay seek
1000

To skip the currently playing sound, you can use /splay -wmp skip

The -q switch allows you to queue sounds for playing after the current sound ends.

The -c switch allows you to clear the play queue except for the currently playing sound.

When a sound finishes playing, it triggers a sound event.

/vol -wmpvuN [volume]
Sets the volume on your system for waves, midis, and mp3s (same as waves)

If you use the -v switch, this sets the master volume on your system.

The volume value can range from 0 to 65535.

The -uN switch sets the mute setting, where N = 1 is on, N = 2 is off.

$vol(wave | midi | song | master)
Gets the current volume for the specified sound setting

Properties: mute

$vol(wave).mute    returns the mute setting for wave sounds

$inwave, $inmidi, $insong
Return $true if the specified sound type is playing, $false otherwise.

Properties: fname, pos, length, pause

$insong.fname    returns the filename of the currently playing song

$sound(type)
Returns the directory specified in the Sound Requests section of the Options dialog,
where type can be wave, midi, mp3, wma, or ogg.

$sound(filename)
Returns either the directory for that file type, as above, or information about the file. The
following properties will return values based on the file type.

Properties: album, title, artist, year, comment, genre, track, length, version, bitrate,
vbr, sample, mode, copyright, private, crc, .id3, .tag, .tags.

If you want to retrieve the id3v2 values, you can use the .tag and .tags properties:

showtags {
  if ($1- == $null) { echo 2 -e * /showtags: please specify filename, eg. /showtags
file.mp3 | halt }
  echo 1 id3: $sound($1-).id3
  echo 1 tags: $sound($1-).tags
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  var %n = $sound($1-,0).tag
  while (%n > 0) {
    echo 1 tag: $sound($1-,%n).tag
    dec %n
  }
}

10.21

Regular Expressions

Regular expressions can be used to perform complicated pattern matching operations.
You should already know how to use Regular expressions before using the identifiers
below.

It is beyond the scope of this help file to explain how Regular Expressions work. There
are many websites on the internet that introduce regular expressions and provide
examples.

$regex([name], text, pattern)
Returns N, the number of strings in text that matched the regular expression pattern.

You can assign a name to a $regex() call which you can use later in $regml() to retrieve
the list of matches.

If you do not specify a name, all identifiers use a 'default' name which is overwritten
with each call to $regex().

$regml() remembers the results for the last fifty $regex() calls. Each time you do a
match with $regex(), and you specify a name, that name's previous results are
overwritten with the new results.

$regml([name], N, [&binvar])
This returns the Nth match returned by a call to $regex(), $regsub(), or $regsubex().

Properties: pos, bytepos, group, match

If N = 0, returns total number of match strings.

The pos property returns a strings position in the original match text.
The bytepos property returns the UTF-8 byte string position in the original match text.
The group property returns the capture group number
The match property returns the match number in the case of a /g global match that
returns multiple matches.

If &binvar is specified, the result is saved to the &binvar and the length of the saved
text is returned.

$regmlex([name], M, N, [&binvar])
If the /g modifier is used with a pattern, multiple results can be returned for that pattern.
This identifier allows you to retrieve these results, where M is the Mth result and N is the
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() capture group number in that result. If N is not specified, it defaults to 1.

This identifier supports the same properties as $regml().

$regsub([name], text, pattern, subtext, %var|&binvar)
Performs a regular expression match, like $regex(), and then performs a substitution
using subtext.

Returns N, the number of substitutions made, and assigns the result to %var or &binvar.

$regsubex([name], text, pattern, subtext, %var|&binvar)
Performs a regular expression match, like $regex(), and then performs a substitution
using subtext.

Subtext is evaluated during substitution and can be an identifier.

Subtext can contain special markers where \n = match number, \t = match text, \a = all
match items, and \A which is a non-spaced version of \a.

Subtext can contain capture group references using \N where N is the number of the
capture group and \0 returns the total number of captures.

Returns text result.

Note: To output results to a %var|&binvar, the [name] parameter must be specified,
and the identifier will return N, the same as $regsub().

$regerrstr
Returns the error string provided by the regular expression library for a failed evaluation.

Supported Modifiers
mIRC supports the following standard modifiers:

g - continue after first match
i - case insensitive match
m - multiple lines match
s - dot matches newlines
x - ignore white spaces

mIRC also supports the following modifiers:

A - anchored - match start of string
E/D - $ dollar matches only at end
U - ungreedy - reverses * and *?
u - enables UTF-8 and UCP
X - strict escape parsing

And the following mIRC-specific modifiers:

S - strip bold, underline, reverse, and color control codes
F - make back-references refer to () capture groups, which is how standard regex works.

Note: If the F modifier is not used, \N references in patterns and N indexes in identifiers
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refer to the order in which matches are found, and $regml() will not include empty
matches.

10.22

SendMessage

mIRC supports SendMessage communication, which allows external applications to
control mIRC or to request information from it. Note that it is also possible to
communicate with mIRC by using DDE.

Performing Commands
The following call to SendMessage() makes mIRC perform the commands that you
specify:

   SendMessage(mHwnd, WM_MCOMMAND, cMethod, cIndex)

   mHwnd - the handle of the main mIRC window, or the handle of a Channel, Query, etc.
window.

   WM_MCOMMAND - which should be defined as WM_USER + 200

   cMethod - how mIRC should process the message, where:
   1 = as if typed in editbox (default)
   2 = as if typed in editbox, send as plain text
   4 = use flood protection if turned on, can be or'd with 1 or 2
   8 = use unicode text

   cIndex - use a named mapped file, where lParam = N, the mapped filename is mIRCN.
                If lParam is zero, the filename is mIRC.

   Returns - 1 if success, 0 if fail

Evaluating Identifiers and Variables
The following call to SendMessage() makes mIRC evaluate the contents of any line
that you specify:

   SendMessage(mHwnd, WM_MEVALUATE, cMethod, cIndex)

   mHwnd - the handle of the main mIRC window, or the handle of a Channel, Query, etc.
window.

   WM_MEVALUATE - should be defined as WM_USER + 201

   cMethod - how mIRC should process the message, where:
   8 = use unicode text

   cIndex - use a named mapped file, where lParam = N, the mapped filename is mIRCN.
                If lParam is zero, the filename is mIRC.

   Returns - 1 if success, 0 if fail
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Mapped Files
The application that sends these messages must create a mapped file named mIRC
with CreateFileMapping().

The lParam (cIndex) parameter indicates the mapped file name that you have used,
where lParam = N, the mapped filename is mIRCN. If lParam is zero, the filename is 
mIRC.

When mIRC receives the above messages, it will open this file and use the data that this
mapped file contains to perform the command or evaluation. In the case of an 
evaluation, mIRC will output the results to the mapped file.

The mapped file must be at least 4096 bytes in length.

To prevent simultaneous access to the mapped file, your code must check whether the
mapped file exists or not before using it. If it exists, you should assume that it is in use
by another program, and should try again later.

Remote Event Context
If during a remote event, such as on TEXT, your script calls a DLL which then uses
SendMessage() to execute a command or evaluate an identifier, you can tell
SendMessage() to execute in the context of that remote event.

During a remote event, a $eventid identifier is set to a unique value to identify the
event. This can be passed to a DLL which can then pass it back to mIRC using:

   SendMessage(mHwnd, WM_MCOMMAND, MAKEWPARAM(cMethod, cEventId), cIndex)

This will cause the command/evaluation to execute in the context of the remote event
identified by cEventId. If cEventId is 0, this indicates a non-remote event.

Extended Version Information
If cMethod is set to -1, you can set cIndex to -1 to receive the mIRC version number and
to -2 to receive the cMethod options that are supported.

Extended Error Information
If cMethod is or'd with the value 16, SendMessage() will return more specific error
values.

The return values are: 0 = success, 1 = failure.

The 1 = failure error can be or'd with 2 = bad mapfile name, 4 = bad mapfile size, 8 =
bad eventid, 16 = bad server, 32 = bad script, 64 = disabled (if disabled in the Other
dialog).

If the error is just 1, this indicates that the command/identifier returned an error.

The 16 and 32 errors indicate that the server/script associated with the eventid no longer
exists.
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10.23

Signals

Signals are a simple way of triggering signal events in multiple scripts at the same time.

/signal [-n] <name> [parameters]
The signal command allows you to trigger signal events in all scripts that listen for
signals.

By default the signal is triggered after all current scripts have finished executing. You can
however use -n to make the script trigger immediately.

on *:SIGNAL:name:command
The on signal event triggers if a script has used the /signal command to send a signal to
all scripts.

The signal name can contain wildcards.

The $signal identifier returns the signal name that caused the signal event to trigger.

The $1- identifier returns the parameters that were specified in the /signal command.

Note: The script that called /signal is triggered first, and then all other scripts are
triggered.

10.24

Sockets

Socket support allows you to create your own raw socket connections in order to send
and receive information. You should already be an expert at writing Aliases, Popups,
and Scripts before attempting to use sockets.

Sockets are a limited resource so it is important that you understand how these
commands work before trying to use them. Sockets should always be closed after they
have been used to make them available to other applications.

Socket Identifiers

$sock(name,N)
This returns information about a socket connection that you created using the socket
commands.

Properties: name, ip, addr, port, status, sent, rcvd, sq, rq, ls, lr, mark, type, saddr,
sport, to, wserr, wsmsg, bindip, bindport, ssl, pause, starttls

.name is the name you give to a connection to identify it

.addr original named address if one was used.

.sent and .rcvd return the number of bytes sent and rcvd over that connection so far
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.sq and .rq return the number of bytes queued in the send and receive buffers
respectively
.ls and .lr return the number of seconds since the connection last sent and last received
info
.mark is a user storage area (see /sockmark)
.type returns the socket type, TCP or UDP
.saddr and .sport return the source address and port of the last received UDP packet
.to returns the number of seconds the socket has been open
.wserr returns the last winsock error number that occurred on a socket
.wsmsg returns the last winsock error message match the error number
.ssl returns $true for an SSL connection
.pause returns $true if a socket has been paused
.starttls returns $true for a STARTTLS connection
.upnp returns $true for a UPnP socket.

Note: You can use a wildcard name to quickly reference matching entries. The N
parameter is optional, if it is not specified it is assumed to be 1.

$sockname
$sockname is the name given to a connection to identify it. This identifier can be used in
events to know which connection an event is related to.

$sockerr
$sockerr is set to a value after each socket command/event and must be checked after
each socket command and before processing an event to see if an error occurred.

$sockbr
$sockbr is set to the number of bytes read by a /sockread command. It is used to test
whether any information was in fact read from the buffer (see below for more info).

Socket Commands and Events

The following information lists associated commands and script events together for easy
reference.

Listening for and Accepting incoming connections

/socklisten [-dpu] [bindip] <name> [port]
The /socklisten command listens on the specified port for connections to that port. If a
port is not specified, the port is selected randomly from the range specified in the DCC
Options dcc ports section.

The -d switch means that you specified an ip address as the bind address.

The -p switch enables UPnP support for the listening socket, if that is available.

The -n switch disables the Nagle algorithm for the connection.

The -u switch enables dual stack sockets.

on 1:socklisten:name:commands
The socklisten event is triggered when someone tries to connect to a port that you are
listening on. If you want to accept the connection you must do it in this event using the



201

 

/sockaccept command, otherwise the connection is closed.

/sockaccept <name>
The /sockaccept command accepts the current connection to your listening port and
assigns it a name to identify it.

The -n switch disables the Nagle algorithm for the connection.

/sockrename <name> <newname>
The /sockrename command assigns a new name to an existing connection.

Opening and Closing connections

/sockopen [-deswap64nt] [bindip] <name> <address> <port>
The /sockopen command initiates a connection to the specified address and port. You can
specify either an ip address or a named address (which will be resolved to an ip address).

The -d switch means that you specified an ip address as the bind address.

The -e switch creates an SSL connection and can be combined with these switches: -s
skip invalid certificates, -w display warning dialog, -a accept invalid certificates, -p
prevent certificate caching.

The -46 switches are optional and specify the IPv4/IPv6 context when resolving named
addresses.

The -n switch disables the Nagle algorithm for the connection.

The -t switch enables STARTTLS negotiation on a non-SSL connection.

on 1:sockopen:name:commands
The sockopen event is triggered when a /sockopen command is successful and a
connection has been made.

/sockclose <name>
The /sockclose command closes the connection with the specified name. If you specify a
wildcard name, all connections that match the wildcard are closed.

on 1:sockclose:name:commands
The sockclose event is triggered when a connection is closed by the remote connection
(not you).

Sending information

/sockwrite [-tnba] <name> [numbytes] <text|%var|&binvar>
The /sockwrite command queues info to be sent on the specified connection. mIRC will
then try to send that info as quickly as it can. Once it has finished sending the info, it
triggers the on sockwrite event so you can send more info if you need to.

If you specify the -t switch, it forces mIRC to send anything beginning with a & as
normal text instead of interpreting it as a binary variable. The -n switch appends a $crlf
to the line being sent if it is not a &binvar and if it does not already have a $crlf.
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The -b switch indicates that you are specifying the numbytes value which is the number
of bytes you want sent.

The -a switch prevents characters in the range 0-255 from being UTF-8 encoded, as long
as the line only contains characters in the range 0-255.

Note: You can use a wildcard name to send the same information at once to all
connections that match the wildcard.

On error: if a /sockwrite fails, it sets $sock().wserr to the error value, and triggers the
on sockwrite event with $sockerr set.

on 1:sockwrite:name:commands
The sockwrite event is triggered when mIRC has finished sending all of the data that you
previously queued for sending or when the socket is ready for more writing.

Note: If you try to /sockwrite while there is still info queued in the send buffer, your new
info will just be added to the end of the queue up to a maximum of 16384 bytes. Any
attempt to queue more than that will result in an error message, so you should check
how much info is currently queued by using $sock().sq (send queue) before trying to
queue info on a socket.

Reading information

on 1:sockread:name:commands
The sockread event is triggered when there is info waiting to be read on the specified
connection. You can read this info using the /sockread command.

Note: If this event triggers but no /sockread is performed to attempt to read the buffer,
it is assumed that no script exists that is handling this buffer, so it is cleared and the info
it contained is lost.

/sockread [-fn] [numbytes] <%var|&binvar>
The /sockread command reads bytes from the receive buffer into the specified variable.

If you specify a %var variable, a line of text ending with a Carriage Return/LineFeed is
read into %var. The $crlf are stripped off (this may result in %var being $null if the line
only consisted of $crlf).

If you specify a &binvar then [numbytes] of info is read into the binary variable. If no
[numbytes] is specified it defaults to 4096 bytes.

If you specify the -f switch with a %var variable, this forces mIRC to fill the %var
variable with whatever text is in the receive buffer, even if it does not end in a $crlf. If
you attempt to use this with binary data, it will only read up to the first NULL byte.

The -n switch allows you to read a $crlf terminated line into a &binvar. If the incoming
line does not contain a $crlf, no bytes will be read into &binvar, unless you specify the -f
switch, which forces the read (same as when reading into %vars).

Note: A single /sockread may not be enough to read the entire buffer. You should keep
reading until $sockbr (bytes read) is set to zero. This is far faster than letting mIRC
re-trigger the event. If your script does not read the whole buffer, the on sockread event
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is re-triggered if:
  a) you were reading into a &binvar.
  b) you were reading into a %var and there is still a $crlf terminated line in the buffer
waiting to be read.

Example:
This example shows you how you should process a sockread event. The socket has
already been opened and has received information, so the sockread event is triggered.
The socket name is testing. There is an explanation of each step below the sample
script.

on 1:sockread:testing:{
  if ($sockerr > 0) return
  :nextread
  sockread %temp
  if ($sockbr == 0) return
  if (%temp == $null) %temp = -
  echo 4 %temp
  goto nextread
}

If $sockerr is greater than zero then there is a socket error. mIRC will automatically
close the socket, so all you have to do is return from the event.

sockread %temp reads a $crlf terminated line of text and stores it in %temp. If the
buffer did not contain a $crlf terminated line, %temp is not filled with anything, and
$sockbr returns zero, so you should just return from the event without further
processing.

If %temp is $null then that means the line consisted only of a $crlf which mIRC has
automatically stripped out of the line, so only an empty line remains. In this case, I am
setting %temp to a dash to represent an empty line but you can do whatever you wish
here.

I then echo the final line that was read to the status window.

Finally, I use goto to jump back and to continue reading remaining lines in the socket's
receive buffer.

Pausing a socket

/sockpause [-r] <name>
The /sockpause command pauses/restarts a socket when reading incoming data.

Marking a socket

/sockmark <name> [text]
The /sockmark command fills the .mark attribute of a socket with the specified info for
later reference via the $sock().mark property. If you do not specify any text, the mark is
cleared.

Note: You can use a wildcard name to set the same information at once for all
connections that match the wildcard.
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Listing open sockets

/socklist [-tul] [name]
The /socklist command lists all open sockets, or if you specify the -tul switches, it lists
tcp, udp, and listening sockets respectively. You can also specify a socket name or
wildcard.

UDP Sockets
UDP is a connection-less protocol, ie. you can send information via UDP to other UDP
addresses without needing to connect to them first.

UDP does not guarantee that any information you send will actually reach its destination,
ie. it is not a reliable protocol. Also, be aware that UDP packets may not arrive in the
same order as that in which they were sent. This means that you must perform your
own checking to confirm that any data you sent actually reached its destination
properly.

/sockudp [-bntkdu] [bindip] <name> [port] <ipaddress> <port> [numbytes]
[text|%var|&binvar]

If you specify the -t switch, it forces mIRC to send anything beginning with a & as
normal text instead of interpreting it as a binary variable. The -n switch appends a $crlf
to the line being sent if it is not a &binvar and if it does not already have a $crlf.

The -b switch indicates that you are specifying the numbytes value which is the number
of bytes you want sent.

The -k switch forces the socket to stay open, this allows it to listen for data that is sent
to its port via UDP. If -k is not specified, the socket is opened, the information is sent to
the specified ipaddress and port, and the socket is then closed.

The -d switch means that you specified an ip address as the bind address.

The -u switch enables dual stack sockets.

If you specify a socket name that does not exist, it is created. If it does exist, the
existing socket is used to send the info.

You can also specify the local port number that you wish to use, if it is not specified,
mIRC chooses one randomly.

ipaddress and port specify the destination address to which you want to send
information. You can only use an IP address here.

On error: if a /sockudp fails, it sets $sock().wserr to the error value, and triggers the on
sockwrite event with $sockerr set.

on 1:udpread:name:commands
The udpread event is triggered when there is info waiting to be read on a UDP socket.
You can read this info using the /sockread command.

Note: If this event triggers but no /sockread is performed to attempt to read the buffer,
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it is assumed that no script exists that is handling this buffer, so it is cleared and the info
it contained is lost.

Other commands and identifiers
The following network-related commands and identifiers are also available.

/bindip [on|off] <ipaddress>
This command allows you to change the bind settings in the Ports dialog. An adapter
name can be specified instead of the IP address.

$bindip(N|ipaddress)
Returns the list of active network adapters. The N = 0, returns the total number of active
network adapters.

Properties: name, ip, loopback

 If an IP address is specified, returns the best network adapter for connecting to that IP
address.

$portfree(N,[ipaddress])
Returns $true if the specified port number is not in use, where N = port number,
otherwise returns $false.

If an IP address is specified, only the interface with that IP address is checked for used
ports, otherwise all active interfaces are checked. An adapter name can also be used
instead of an IP address.

$iptype(text)
Returns "ipv4" or "ipv6" if text is is a valid IP address format.

Properties: compress, expand

With IPv6 addresses, the properties .compress and .expand can be used.

10.25

Toolbar

The /toolbar command can be used to modify the mIRC toolbar. The command format
is:

/toolbar -aidmsxkNnNzNebwhyNurctplorf[sld] [N] <name/N> <tooltip> <picfile|@> [x y
w h] [/alias] [popfile|@]

Switches and Parameters

-a = add button
-i = insert button at position [N]
-d = delete button at position [N] or <name>
-m = move button <name/N> to position [N]

-s = separator
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-x = wide button

-kN = use when adding button to make it a check button
         check/uncheck with N = 1 or N = 0

-nN = icon index in picfile
-zN = icon size, 1 = small, 2 = large, 3 = actual

-eb = enable/disable button [N] or <name>
-wh = show/hide button [N] or <name>

-yN = set transparency (0 to 255) for button [N] or <name>

-u = update display immediately
-r = reset buttons
-c = clear all buttons

-f[sld] = load/save/delete settings in toolbar.ini file
            toolbar.ini is automatically loaded on startup

-v = enable loading of PNG file that uses alpha channel transparency

To update properties for an existing button:

-t = tooltip
-p = picfile
-l = alias
-o = popup

name = unique name assigned to button/separator, it cannot be a number.

tooltip = text displayed when the mouse hovers over button.

picfile|@ = picture filename or picture @window, min 16x16, max 256x256 pixels.

x y w h = position in bitmap and size of bitmap to use (not for use with icons).

/alias = command performed when button pressed, where $!1 = button name.

popupfile|@ = popup filename or @menu name.

The tooltip, picfile, alias and popup can be enclosed in quotes if necessary. To clear an
item, can use "" empty quotes.

Note: Modifying some of the default mIRC buttons, such as Connect, Notify, etc. may not
always work since they are managed by mIRC. They can however be deleted.

Examples

/toolbar -a Cow "Moo moo!" cow.bmp "/echo I am cow, hear my moo" @cow

The above command creates a button called "Cow" with the tooltip "Moo moo!" using the
button picture cow.bmp. If the button is clicked, it will run the command "/echo I am
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cow, hear my moo", and if right-clicked, it will popup the menu @cow.

/toolbar -m 1 Cow

The above command will move the button named "Cow" to position 1 in the toolbar.

/toolbar -p Cow goat.bmp

The above command will change the picture on the button named "Cow" to "goat.bmp"

/toolbar -is 2 cowsep

The above command will insert a separator named "cowsep" (every button and separator
you add to the toolbar must have a name) at position 2.

Identifiers

$toolbar(name/N)
Returns properties for a toolbar button. If N = 0, returns number of buttons.

Properties: name,type,tip,alias,popup,width,height,wide,enabled,visible,checked,alpha

10.26

Voice Commands

If you have Speech Recognition software installed, mIRC can be made to listen to
voice commands through scripting.

/vcmd -lc <on | off | sleep>
This turns voice command listening on or off, or you can temporarily turn off listening by
specifying sleep.

The -c switch clears the commands list.

The -l switch lists the commands in your commands list.

Note: Your SR software may have very large speech files or dictionaries which could
make it slow to load/unload and/or process your speech.

/vcadd <command1,command2,...>
This adds voice commands to the commands list.

Commands should consist of at least two words and should be sufficiently distinct from
other commands to make it easier for your SR software to match the words you speak to
commands in your commands list.

Note: Adding or removing commands can be done on the fly, however if your SR
software is slow at updating the commands list, it could cause short pauses in mIRC.

/vcrem <command1,command2,...>
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This removes commands from the commands list.

$vcmdver
Returns the version of your installed SR software, or $null if not installed.

$vcmdstat
Returns 0 if not available, 1 if currently off, 2 if ignoring commands, 3 if listening for a
command.

$vcmd(N)
Returns the Nth item in your commands list.

The on VCMD event
If the SR software matches a word you have spoken to a word in your commands list, it
triggers the on VCMD event:

  on 1:VCMD:<matchtext>:<*/#/?/@>:/echo 3 Recognized: $1-

Example Script

alias vctest {
  if ($vcmdver == $null) halt
  vcmd -c on
  vcadd connect Dalnet, connect Efnet, connect Undernet, connect IRCnet
  vcadd Part Channel, Disconnect, List Commands, Moo Cow
}

on 1:vcmd:connect*:*:server $2
on 1:vcmd:part channel:*:if ($active ischan) part $active
on 1:vcmd:disconnect:*:quit
on 1:vcmd:list commands:*:vcmd -l
on 1:vcmd:moo cow:*:splay moo.wav
on 1:vcmd:*:*:echo You said: $1-

11

Other features

Command Line
Key Combinations
Text Copy and Paste
Hotlinks

Address Book
Channel Central
Online Timer

Help Menu
System Menu
Window Menu
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11.1

Command Line

Command line switches allow you to change the behaviour of mIRC when it is first run.
The switches can be used by creating a Windows Shortcut to the mIRC executable and
appending the switches to the target filename, eg.:

"C:\Program Files\mIRC\mirc.exe" -sUndernet

mIRC supports the following command line switches:

-s<server:port>
Makes mIRC connect to the specified server and port on startup.

-j<#chan1,...,#chanN>
Makes mIRC join the specified channels on connect.

-p<password>
Specifies the password required to join the channel.

-n<nick1,nick2>
Sets your main and alternate nicknames.

-i<filename.ini>
Makes mIRC use the specified file in place of mirc.ini.

-r<path>
Sets the data path where mIRC saves mirc.ini as well as other files and data. If -r is
specified without a path, the path is set to that of the mIRC executable.

-noreg
Makes mIRC avoid use of the registry. This includes not adding irc:// and ircs:// link
support.

-noconnect
Prevents mIRC from connecting to a server on startup if that option is enabled in the
mIRC options dialog.

-portable
This is a combination of the -r and -noreg switches.

11.2

Key Combinations

Channels List keys

Shift+DoubleClick
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You can use this in the channels list window to join a channel minimized.

Cursor and Page keys

Cursor Up/Down
Browses the command line history buffer for a single-line editbox.

Control+Cursor Up/Down
Browses the command line history buffer for a multi-line editbox.

Page Up/Down
Browses the scrollback buffer of a window a page at a time.

Control+Page Up/Down
Browses the scrollback buffer of a window a line at a time.

Control+Home/End
If you are editing text in an editbox, this moves the cursor in the text to the start or end
of the edtibox. If there is no text in the editbox, this moves the scrollback buffer of a
window to the top or bottom.

Editbox keys

Alt+Enter
In a multi-line editbox this moves the cursor to the next line allowing you to enter
several separate lines.

Control+Enter
If you want to send information beginning with the / command prefix and you want it to
be sent as normal text instead of interpreted as a command, just hold down the
Control key when you press enter.

Control+BURKO
Inserts control codes for bold, underline, reverse and color in text.

Shift+Tab
Switches between the editbox and the nickname listbox in a channel window. See the 
Keys section where this behaviour can be changed.

Help keys

F1
Shows the help file and is context sensitive, so you can press it in a dialog and it will
bring up the help file section describing that dialog. Remember that if this key is
redefined as an alias it will no longer work as a help key.

Shift+F1
Displays the Keyword search dialog for the help file. If this is redefined as an alias it will
no longer work as a help key.

Search keys

Control+F
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In status/channel/query/etc. windows, this opens up a text search dialog allowing to you
search the text buffer of that window for matching text.

Control+L
Scrolls back text in a window to the Line Marker.

Switchbar keys

Alt+LeftClick
You can use this on a Status Window switchbar button to show/hide all buttons
associated with the status window. New windows will always have their buttons displayed
even if the hide option is on. You can use Alt+F1 to show/hide buttons.

Shift+LeftClick
This closes the window associated with the switchbar button.

Control+LeftClick
This minimizes the window associated with the switchbar button.

Tab key

Tab
If an editbox is empty and you press the Tab key, mIRC inserts a "/msg nickname" into
the editbox of the window you are currently on, where nickname is the last person that
sent you a message.

You can use Control+D to remove a nickname from the Tab Key nickname list of users
who have recently messaged you.

Note: The editbox needs to be empty in order for the Tab key to work as described
above since the Tab key also performs the functions below...

If you are in a channel window editbox and it contains some text, the Tab key performs
nickname completion on the word the cursor is on, this allows you type in only the first
character or two of a nickname on that channel and then press Tab and mIRC will expand
it to the full nickname.

If you press the Tab key while the cursor is positioned over a %variable or $identifier, it
is evaluated.

The Tab completion also works for a nickname in a query window, the nicknames in your
notify list when in the status window, and for channel names in your favorites folder
when in any window.

You can also use wildcard *? characters in nickname tab completion.

Text mark/copy keys

Control+Copy
If you want to copy text with control codes, you can hold down the Control key while
you do the copy.

Shift+Copy



mIRC Help212

 

If you want to copy text with line-breaks as it appears in a window, you can hold down
the Shift key while you do the copy.

Toolbar keys

Control+Connect
You can hold down the Control key while clicking the Connect toolbar button to make
mIRC use the next server in the list.

Shift+Connect
You can hold down the Shift key while clicking the Connect toolbar button to make mIRC
connect to the current server using the same port instead of a randomly selected port.

Treebar keys

Control+T
This toggles focus between the Treebar and the currently active window.

Window keys

Alt+1...9
If you press Alt and a number, mIRC will display the Nth window listed in your Window
menu. If you press Alt+0 (zero) and you are in an mIRC desktop window, it will jump to
the main mIRC window.

Alt+Q
Shows or hides the second editbox in a channel window.

Alt+X
Toggles the maximized state of the active window.

Alt+Z
This closes the active window, if enabled in the Keys dialog.

Control+Minimize
This minimizes mIRC and asks you for a Lock password..

Control+N
Cycles through channel windows.

Control+Q
Cycles through query windows.

Control+Tab
Cycles through all windows, as set in the Keys dialog.

ESCape
Quickly minimizes the active window, it must be turned on in the Other dialog.

Shift+Minimize
This minimizes mIRC in a way opposite to that selected in the Tray dialog.

Shift+RightClick
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You can roll/unroll a window by holding the shift-key and clicking your right mouse
button on the window titlebar.

11.3

Text Copy and Paste

To copy text
You mark the text as usual with the mouse by pressing the left mouse-button and
dragging it. The moment you release the left mouse-button, the text will be copied into
the clipboard.

You can only copy the currently displayed text. To copy text from another page, you
must scroll up/down to it and then copy it. If you want to store most of the text you see
on a channel, you might want to use the logfile/buffer options in the System Menu.

To paste text
You can then use the usual Shift-Insert or Control+V key combination to paste the text
anywhere you wish.

Note: See Key Combinations for keys you can use while copying text.

11.4

Hotlinks

When you move your mouse in a window over text that is a website or email address,
or a nickname of a certain type, the mouse pointer changes to a finger indicating that
you can click, double-click, or right-click on that text to perform certain functions.

If you double-click on a website address, mIRC will open up your web browser to visit
that website.

You can also hold down the shift-key and double-click on email addresses to open your
email program. The shift-key is required because of the huge number of addresses on
IRC which look like emails but are not.

If you are in a channel window and you move the mouse over text that is a nickname
on that channel, you can double-click on it for the usual double-click behaviour, or
right-click on it to open the nickname list popup menu. If you single-click on the
nickname, the cursor in the listbox is scrolled to that nickname.

You can also double-click on text that is a channel name in any window to join that
channel.

If you move the mouse over text that is a nickname in your Notify list, you can also click
your right mouse button to pop up the notify popup menu.
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Note: This behaviour depends on the Hotlink setting in the Other dialog.

11.5

Address Book

The Address Book can be used to store various types of information about users. It can
be accessed via the Tools menu, the  toolbar or by pressing Alt+B.

Address
The Address section allows you to store basic information about users on IRC.

Nickname
Nickname on IRC. Information in the Address Book is stored according to nickname.

Real Name
Real name.

Email
Email address. If you click on the Email button, mIRC will start up your email software.

Website
Website address. If you click on the View button, mIRC will start up your web browser.

IP Address
IP Address. If you click the Chat button, mIRC will initiate a DCC Chat directly to this
user's DCC Server instead of using the IRC Server.

Note: A user may not always have the same IP Address.

The address book dialog can also be opened by using the command:

/abook -wnclh [nickname]

where the -wnclh switches open the whois, notify, control, colors, and highlight tabs.

Notes
Notes. You can enter various notes about a user.

Picture
If a user sends you their picture, you can associate it with their nickname in the address
book.

Info
The Info section displays the result of the /uwho command which looks up information
for a user on IRC. The format of the /uwho command is:

/uwho [nick] [nick]

This performs a /whois on the specified nickname to look up their server information
and then displays it in the info section of the address book. Because of the way IRC
Servers work, you may need to specify the nickname a second time in order to look up
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information such as idle time or the away message, however this information usually
takes longer to retrieve.

Note: The address shown in the Info dialog may not be an email address, it is mainly an
indication of the user's internet provider.

Notify
The Notify list is a buddy list, it notifies you when a nickname is on IRC.

Control
The Control list performs functions related to channel and user control.

Nick
The Nick Colors list allows you to assign colors to nicknames.

Highlight
The Highlight list allows you to assign colors to messages.

11.5.1

Notify List

The notify list is like a buddy list, it notifies you when someone in your list comes on
or leaves the IRC network that you are on.

The notify list works differently depending on the IRC network you are using. On some
networks the notify list is updated once every minute or so, while on other networks it is
updated immediately.

Adding a User
To add a user you can open the Address Book, select the Notify tab, press the Add
button, and enter the following information.

Nickname
The nickname of a user that you want notify to look for.

Note
An optional note or reminder that will appear next to the users nickname.

Play sounds
The sounds that you want played when the user joins or leaves IRC.

Perform /whois
This option makes mIRC perform a /whois on the user when they join IRC to look up
their address. You should only use this option if you really need to, if you use it with too
many nicknames then the IRC server might disconnect you for flooding.

Notify display options

Pop up notify window on connect
This will pop up the notify list window when you connect to an irc server.
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Show notifies only in notify window
This will make mIRC display notifies only in the notify window.

Show notifies in active window
The default is to show notifies in the status window, however checking this option will
also show notifications in the current active window.

Display address and time
On IRC networks that support this feature, mIRC will display the nicknames address and
time online.

The /notify command
You can also add/remove nicknames from the notify list by using the /notify command.

/notify [-shrln] <on|off|nickname> [network|address] [note]

You can turn notify on and off by typing /notify on or off respectively.

The -sh switches can be used to show or hide the notify list window respectively

The -r switch removes the specified nickname from your notify list.

The -l switch displays your notify list.

The -n switch indicates that the network or server address has been specified.

The note is optional and allows you to specify a little note for each nickname.

If you prefix a nickname with a + sign then mIRC will do a /whois on the nickname as
part of the notify. However, if you do this on too many nicknames then the IRC server
might disconnect you for flooding, so it is best to use it only if you really need to.

You can manually force mIRC to update the notify list by typing /notify with no
parameters.

Note: Some IRC networks might let you use a full address instead of just a nickname,
the only way to see if it works is to try it out.

11.5.2

Control

The Control dialog performs functions related to channel and user control.

Auto-Op
If a user joins a channel where you have Ops and that user's address is listed in the
auto-op list, they will be given Op status. You can add an address to the list in the
following format:

nick!userid@host,#channel1,#channel2
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On IRC, user addresses are specified in the format:

nick!userid@host

So if my nickname is nick and my address is user@mirc.com then to put me in your
list, you would use:

nick!user@mirc.com

If I change nicknames a lot, then you would use:

*!user@mirc.com

If I change my nickname and userid a lot, then:

*!*@mirc.com

The /aop command

/aop [-lrw] <on|off|nick|address> [#channel1,#channel2,...] [type] [network]

The -r switch indicates that the address is to be removed.
The -l switch displays the list of auto-op addresses that match the specified switches.
The -w switch makes the auto-op apply to any network.

If you do not specify a type then only the users nickname is used. If you specify a type
then the users address is looked up via the server.

The $aop identifier returns $true if auto-op is enabled, and $false if it is not.

The $aop(address|N) identifier returns any matching address in the list, or the Nth
address. The .type property returns the list of channels. The .network property returns
the associated network, if any.

Auto-Voice
The auto-voice list works in exactly the same way as the auto-op list. The /avoice
command, which uses the same format as /aop, can be used to add or remove users to
your auto-voice list.

The $avoice identifier returns $true if auto-voice is enabled, and $false if it is not.

The $avoice(address|N) identifier returns any matching address in the list, or the Nth
address. The .type property returns the list of channels.

Random delay auto-op/voice
This option introduces a random 1 to 7 seconds delay in the auto-op/voice routine. This
is to prevent channel windows from filling up with mode notifications whenever a
nickname is in the auto-op/voice list of several users. If at the end of the random delay
the user has already been opped/voiced then mIRC does not perform an op/voice.

Ignore
This feature allows you to ignore various types of messages from users. You can either
choose to ignore a user completely, or to ignore only specific messages from a user.
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nick!userid@host,private,invite,ctcp

The /ignore command

/ignore [-lrpcntikdshywxu#] <on|off|nick|address> [type] [network]

Where p = private, c = channel, n = notice, t = ctcp, i = invite, k = control codes, d =
DCCs, s = speech, h = highlight, y = tips.

The -u# switch specifies a delay in seconds after which the ignore is automatically
removed.
The -r switch indicates that the address is to be removed.
The -x switch indicates that this address should be excluded from ignores.
The -l switch displays the list of ignore addresses that match the specified switches.
The -w switch makes the ignore apply to any network.

If you do not specify a type then only the users nickname is used. If you specify a type
then the users address is looked up via the server.

You can clear the ignore list by specifying -r with no address.

Note: If you have a /query window open with someone, private messages from them will
not be ignored even if their address matches an ignore address.

The $ignore identifier returns $true if ignore is enabled, and $false if it is not.

The $ignore(address|N) identifier returns any matching address in the list, or the Nth
address. The .type property returns the ignore method. The .network property returns
the associated network, if any. The .secs property returns the time left before the ignore
is removed.

Protect
If you are on a channel and you have channel Op status, any users that match the
nicknames in the protect list will be automatically protected. mIRC does this by kicking
or de-opping anyone who tries to kick or de-op your protected users. You can add an
address to the list using the following format:

nickname,#channel1,#channel2

Note: This option is usually limited to using nicknames because of the way IRC servers
work, however you can specify an address, and if the user is in your Internal Address List
, they will be protected by address.

The /protect command

/protect [-rw] <on|off|nick|address> [#channel1,#channel2,...] [type]
[network]

The -r switch indicates that the address is to be removed.
The -l switch displays the list of protect addresses.
The -w switch makes the protect apply to any network.
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If you do not specify a type then only the users nickname is used. If you specify a type
then the users address is looked up via the server.

The $protect identifier returns $true if protect is enabled, and $false if it is not.

The $protect(address|N) identifier returns any matching address in the list, or the Nth
address. The .type property returns the list of channels. The .network property returns
the associated network, if any.

11.5.3

Nick Colors

The Nick colors section allows you to assign colors to nicknames, which are then
highlighted with their assigned colors in the channel nicknames list, and in any messages
that those nicks send to channel or query windows.

Adding a Nick
When adding a nick, you must select a Nick color from the color listbox, and one other
item in the Apply section.

For example, you could select the color red and enter a nickname in the Nick or
Address editbox. This would highlight that specific nickname in the color red in the
channel nickname listbox, and in messages that this user sends to channel or query
windows.

The settings in the Apply section are cumulative. This means that if you enter a
nickname, and enter a channel mode, only users matching this nickname and having this
channel mode will be highlighted.

The nick color list uses the first match it finds for any event, so you must prioritize the
order of the items in the list yourself.

If you enable the Auto-color option, this will assign random colors to users based on
their nickname.

Note: You can specify %vars or $identifiers as the nick.

Commands and Identifiers
The nick color list can be modified and referenced by using the /cnick command and the
$cnick() identifier.

/cnick -rfaniovpylNmNsN [on|off|nick[!user@host]] [color] [modes] [levels]
This allows you to modify the items in the nick color list.

The r switch removes the specified nick or address from the list.

You can use /cnick -r nick/N to remove first item that matches nick in the nick color
list or the Nth item in the nick color list.

To match any nick, use the * character as the nick.
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The f switch forces the addition of a new entry instead of updating an existing one.
The a switch sets the Any Mode option.
The n switch sets the No Mode option.
The iovpy switches set the ignore, op, voice, protect, and notify list options respectively.

The lN switch sets the idle time.
The mN switch sets the highlight method, 0, 1, or 2.
The sN switch sorts the item into the Nth position in the list.

The color item is the color you want to assign to the nick. Use * to enable auto-color.
The modes item is the list of modes required for that item to match, eg. @%+
The levels item makes mIRC search your User List for a matching level and address.

Note: /cline over-rides the nick color list. You can use /cline -r to reset a nick to default
color to make the nick color list apply to a nick.

$cnick(N/nick, M)
Returns Nth nick in nick color list, or if nick is specified returns Nth position of item in list
that matches nick. If nick does not match any items, returns zero.

Properties: color, modes, levels, method, anymode, nomode, ignore, op, voice, protect,
notify, idle, auto

To get a nick's color, you can use $cnick(nick).color. If nick does not match any items
in the list, returns 'Normal Text' color, or if M = 1, returns 'Listbox text" color. M is
optional.

11.5.4

Highlight

The highlight feature allows you to assign colors and sounds to incoming messages
that contain certain words that you want to watch for.

By using this feature, you can do things like make messages from certain people, ie. your
friends, a different color, or make mIRC play a sound if someone says a specific word.

Your highlight list displays your current list of highlight rules, which you can change by
clicking the Add, Edit, or Delete buttons.

Enable Highlighting
This turns highlighting on or off.

Highlight lines that contain these words
This is the list of words that you want mIRC to check for in messages from users. The
words must be separated by commas. Your words are matched against whole words, or
words enclosed in non-alphabetic characters. You can also use wildcards *? to make a
word match non-whole words, eg.: *help*

Note: You can also use Variables or Identifiers as a highlight word.

From these channels/nicks
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This is the list of channels and/or nicknames to which this highlight should be applied.

Match on
Allows you to choose whether the match is applied to the message, the nickname, or
both.

Color
This is the color that you want lines matching your highlight criteria to appear in.

Play sound
This is the sound that you want played for lines that match your highlight criteria.

Flash message
If this is turned on, mIRC will flash the mIRC icon if a match is made and your mIRC is
not the active window, or if it is minimized.

Note: You can also include variables or identifiers in the flash message that are
evaluated at every flash.

Tip message
If this is turned on, mIRC will display a tip that notifies you when a match is made.

Message
This is the message that you want displayed during a flash/tip event.

11.6

Channel Central

The channel central dialog allows you to set various channel modes if you are an Op
on a channel. If you are not an Op you will not be able to change the channel modes
and they will appear disabled.

You can find out more about channel modes in the Basic IRC Commands section.

Topic History
Lists the current topic, and the history of topic changes during your stay on a channel.

Bans List
This allows you to view, edit, or remove various types of mode settings, such as bans,
exceptions, and invites. Most IRC networks support ban lists, however few support
exception and invite lists currently.

Only Ops set topic
This allows only Ops on a channel to change the channel topic.

No external messages
This prevents users who are not on the channel from sending messages to the channel.

Invite only
This setting prevents users from joining the channel unless someone on the channel has
specifically invited them using the /invite command, eg. /invite nickname #channel
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Moderated
This prevents users from speaking on a channel unless they have been given a voice on
the channel by an Op. This feature allows you to moderate the channel for events such
as interviews, etc.

Key
This option allows you to set a password for the channel if you are an Op. Any user who
wishes to join your channel will need to specify the password when joining, eg. /join
#channel password

Limit to N users
This limits the number of people who can be on the channel at any one time to N people.

Private
This prevents a channel from being listed in the channels list.

Secret
This prevents a channel from being listed in the channels list and from being seen in a
/who or /whois unless the person issuing the /whois is on that channel.

Note: The Events dialog for a channel can now be accessed via the System menu.

11.7

Online Timer

The Online timer is displayed in the titlebar of the status window next to your
connection information.

You can choose to have the timer display your total cumulative connect time for all
server connections, or the current connect time for an individual server connection.

You can also reset the connect time for each display method individually. The online
timer displays the date on which the timer was last reset.

11.8

Help Menu

The contents and search menu items in this menu allow you to reference the help file,
and there are direct links to the mIRC website for the latest news and the message
board.

The mIRC help menu also lists files ending in .hlp and .txt in the main mIRC folder for
easy access, and makes aliases for each of the files listed in the help menu, the aliases
being the name of the file excluding the extension.

For example, if you put a help file by the name of winsock.hlp in your mIRC directory,
mIRC would add the winsock.hlp item to your help menu, and would make an alias
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/winsock. You can then type /winsock sometext and mIRC would do a
context-sensitive search in that help file for the text you specified.

The check for updates feature checks with the mIRC website to see if there is a newer
version of mIRC available.

The register item allows you to enter your registration into your copy of mIRC.

11.9

System menu

If you click the system menu button in the top left hand corner of a window ie. the
button you usually double-click to close a window, it will popup the usual system menu
but with a few added functions (these vary depending on the type of window).

Background
This allows you to select a background picture for a window. You can choose to have the
picture displayed in various ways, eg. tiled, centered, etc.

Note: Displaying a background picture slows down the display of text in a window
significantly.

Beeping
If beeping is turned on, mIRC will beep any time a message is sent to the window if it is
not active. This setting is remembered across sessions for each window.

Buffer
You can clear the text in the current window buffer or you can save the text to a file.

Desktop
This allows you to position a window outside of the main mIRC window and onto the
desktop.

Editbox
This option is available in channel windows and allows you to create a second editbox,
for general use. You can press Alt+Q to show/hide the editbox. Also see a related option
in the Other dialog.

Events
This appears in Channel windows, it allows you to set display settings for events for a 
specific channel. The default display settings for all channels can be set via the IRC
dialog.

Flashing
If flashing is turned on, the mIRC window/icon is flashed if there is a new message in the
window while mIRC is not the active application. The flash sound specified in the Event
Beeps section is also played.

Font
This allows you to change the default font for a window. The font settings for each
window will be remembered across sessions.
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Logging
If logging is turned on, any text displayed in a window will be logged to a file. This
setting stays on across sessions until you switch it off. The filename is automatically
taken from the name of the window.

Nicklist
This option is available in channel windows and allows you to change the position of the
nicknames listbox.

Position
You can tell mIRC to remember or forget the position/size of a window. If you select
remember, the next time that window opens up it will do so in the saved position. If you
choose reset, the window will be moved back to its previously saved position.

Note: If a window's saved position lies outside the size of the main window then it will
open in a default position and size. To force a window to open up in default positions
assigned by windows, select forget.

Save As...
This option is only available in custom picture windows, it allows you to save the current
picture to a .bmp file.

Spacing...
This allows you to set the line-spacing for messages in a window.

On Top
This appears only when a window is opened in Desktop mode and forces the window to
stay above all other windows.

Timestamp
This turns timestamping of events on/off for a window.

Track URLs
This appears in Channel/Query windows, if turned on, mIRC auto-opens websites as they
are mentioned in a message.

11.10

Window Menu

The Tile, Cascade, and Arrange Icons menu items work the same way as in other
applications.

The group dialog allows you to change the way windows are grouped when tiled or
cascaded.

The order dialog allows you to change the display order of buttons in the switchbar.

The auto-tile and auto-cascade options reposition/resize windows every time a new
window is created or destroyed so as to make all of the windows more accessible.
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The auto-arrange option re-arranges minimized icons (when the switchbar is turned off)
whenever an icon window is closed.

12

How to Register

mIRC can be downloaded freely and evaluated for up to 30 days. If after evaluating
mIRC you find that you like it and want to continue using it, you will need to register
mIRC.

Your single-user registration will license you to continue using mIRC, will support work
on new features and updates, and will provide you with technical support via email.

mIRC can be registered through the mIRC website at http://www.mirc.com

13

About mIRC

mIRC is the work of a small, privately owned software house, located in the heart of
London in the United Kingdom. We have been developing and caring for mIRC for over a
decade, with the support of users and volunteers from around the world.

If you enjoy using mIRC, or have a question about it, we would love to hear from you.
You can find out how to contact us here.

A heartfelt thanks to the many people who have supported mIRC over the years and who
have helped to make mIRC what it is today.

Thanks to ...

Tjerk Vonck for creating the first #mIRC channel, the original mIRC website, the mIRC
and IRC FAQs, and so much more.

The Beta-testers for their hard work in catching bugs and suggesting features.

The Helpers on #mIRC, #irchelp, and other channels for helping out new users day after
day.

The Scripters for creating useful scripts and add-ons for others to enjoy.

And to ...

Andrzej Kowalik, for contributing his work on the toolbar icons.

Jarkko Oikarinen, creator of IRC, and the many people after him who have continued
the development of IRC.

http://www.mirc.com
http://www.mirc.com/contact.html
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Kevin Day, for coding and contributing various routines.

Nicolas Pioch for his short IRC primer, Ramji, Bibbly, Stimps, Mike, James G.,
Edward, Bunster for the queen-size futons, Peeg for the *bonk*s over the head, and
Viv :)

M. Hunnibell, M. Overtoom, Mark "Too Slick" Hanson, Ron R., and Dan Lawrence
for their technical help.

Richard "Budman" Jones, who designed and contributed the original  logo.
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